### Unit 2: Elements of Probability and Random Variables

Probabilities affect our everyday lives. In this unit, you will learn about probability and its properties, how probability behaves, and how to calculate and use it. You will study the fundamentals of probability and will work through examples that cover different types of probability questions. These basic probability concepts will provide a foundation for understanding more statistical concepts, for example, interpreting polling results. Though you may have already encountered concepts of probability, after this unit, you will be able to formally and precisely predict the likelihood of an event occurring given certain constraints.

Probability theory is a discipline that was created to deal with chance phenomena. For instance, before getting a surgery, a patient wants to know the chances that the surgery might fail; before taking medication, you want to know the chances that there will be side effects; before leaving your house, you want to know the chance that it will rain today. Probability is a measure of likelihood that takes on values between 0 and 1, inclusive, with 0 representing impossible events and 1 representing certainty. The chances of events occurring fall between these two values.

The skill of calculating probability allows us to make better decisions. Whether you are evaluating how likely it is to get more than 50% of the questions correct on a quiz if you guess randomly; predicting the chance that the next storm will arrive by the end of the week; or exploring the relationship between the number of hours students spend at the gym and their performance on an exam, an understanding of the fundamentals of probability is crucial.

We will also talk about random variables. A random variable describes the outcomes of a random experiment. A statistical distribution describes the numbers of times each possible outcome occurs in a sample. The values of a random variable can vary with each repetition of an experiment. Intuitively, a random variable, summarizing certain chance phenomenon, takes on values with certain probabilities. A random variable can be classified as being either discrete or continuous, depending on the values it assumes. Suppose you count the number of people who go to a coffee shop between 4 p.m. and 5 p.m. and the amount of waiting time that they spend in that hour. In this case, the number of people is an example of a discrete random variable and the amount of waiting time they spend is an example of a continuous random variable.

**Completing this unit should take you approximately 25 hours.**

### End of Unit Assessment

Please take this assessment to check your understanding of the materials presented in this unit.

**Notes:****There is no minimum required score to pass this assessment, and your score on this assessment**__will not__factor into your overall course grade.**This assessment is designed to prepare you for the Final Exam that will determine your course grade. Upon submission of your assessment you will be provided with the correct answers and/or other feedback meant to help in your understanding of the topics being assessed.****You may attempt this assessment as many times as needed, whenever you would like.**