More on the Quadratic Formula
Quadratic Formula
The solutions to a quadratic equation of the form are given by the formula:
To use the Quadratic Formula, we substitute the values of ,
and
into the expression on the right side of the formula. Then, we do all the math to simplify the expression. The result gives the solution(s) to the quadratic equation.
EXAMPLE 10.28
How to Solve a Quadratic Equation Using the Quadratic Formula
Solve by using the Quadratic Formula.
Solution
TRY IT 10.55
Solve by using the Quadratic Formula.
TRY IT 10.56
Solve by using the Quadratic Formula.
HOW TO
Solve a quadratic equation using the Quadratic Formula.
Step 1: Write the Quadratic Formula in standard form. Identify the ,
and
values.
Step 2: Write the Quadratic Formula. Then substitute in the values of ,
and
values.
Step 3: Simplify.
Step 4: Check the solutions.
If you say the formula as you write it in each problem, you'll have it memorized in no time. And remember, the Quadratic Formula is an equation. Be sure you start with ''
EXAMPLE 10.29
Solve by using the Quadratic Formula.
Solution
![]() |
|
This equation is in standard form. | ![]() |
Identify the |
![]() |
Write the Quadratic Formula. | ![]() |
Then substitute in the values of |
![]() |
Simplify. | ![]() |
Rewrite to show two solutions. | ![]() |
Simplify. | ![]() |
Check. | ![]() |
TRY IT 10.57
Solve by using the Quadratic Formula.
TRY IT 10.58
Solve by using the Quadratic Formula.
When we solved quadratic equations by using the Square Root Property, we sometimes got answers that had radicals. That can happen, too, when using the Quadratic Formula. If we get a radical as a solution, the final answer must have the radical in its simplified form.
EXAMPLE 10.30
Solve by using the Quadratic Formula.
Solution
We can use the Quadratic Formula to solve for the variable in a quadratic equation, whether or not it is named 'x'.
TRY IT 10.59
Solve by using the Quadratic Formula.
TRY IT 10.60
Solve by using the Quadratic Formula.
EXAMPLE 10.31
Solve by using the Quadratic Formula.
Solution
TRY IT 10.61
Solve by using the Quadratic Formula.
TRY IT 10.62
Solve by using the Quadratic Formula.
We cannot take the square root of a negative number. So, when we substitute ,
, and
into the Quadratic Formula, if the quantity inside the radical is negative, the quadratic equation has no real solution. We will see this in the next example.
EXAMPLE 10.32
Solve by using the Quadratic Formula.
Solution.
TRY IT 10.63
Solve by using the Quadratic Formula.
TRY IT 10.64
Solve by using the Quadratic Formula.
The quadratic equations we have solved so far in this section were all written in standard form, . Sometimes, we will need to do some algebra to get the equation into standard form before we can use the Quadratic Formula.
EXAMPLE 10.33
Solve by using the Quadratic Formula.
Solution
TRY IT 10.65
Solve by using the Quadratic Formula.
TRY IT 10.66
Solve by using the Quadratic Formula.
When we solved linear equations, if an equation had too many fractions we 'cleared the fractions' by multiplying both sides of the equation by the LCD. This gave us an equivalent equation – without fractions – to solve. We can use the same strategy with quadratic equations.
EXAMPLE 10.34
Solve by using the Quadratic Formula.
Solution
TRY IT 10.67
Solve by using the Quadratic Formula.
TRY IT 10.68
Solve by using the Quadratic Formula.
Think about the equation . We know from the Zero Products Principle that this equation has only one solution:
.
We will see in the next example how using the Quadratic Formula to solve an equation with a perfect square also gives just one solution.
EXAMPLE 10.35
Solve by using the Quadratic Formula.
Solution
Did you recognize that is a perfect square?
TRY IT 10.69
Solve by using the Quadratic Formula.