Role-Based Access Control (RBAC)
13. Policy Recommendations
Try to remove as many capabilities from default subjects as possible. The more you remove, the closer root comes to acting as a regular user. The more capabilities you remove, however, the more subjects you will have to create for programs that need those capabilities. The RBAC system will enforce that a minimum level of capabilities be removed from all default subjects.
Use full system learning. It will generate a better policy than you would have generated by hand. Make sure you're making full use of the /etc/grsec/learn_config file to specify the files and directories particular to your system that you want protected. gradm will do all the heavy lifting of creating privilege boundaries for processes that access or modify important data.
Administrative programs, such as shutdown or reboot, should require authentication instead of giving everyone the capabilities to run them.
Always inspect your kernel logs. The RBAC system provides a great amount of human-readable information in every kernel log. Of particular importance is what role and subject were assigned to the process causing an alert. If you think that the alert doesn't match up with what you expect from your policy, make sure that the role and subject actually match. If they don't, then you may have issues with a role_allow_ip rule that's preventing the proper role from being applied.
Familiarize yourself with Linux’s capabilities and what they cover. A full listing of them is available here: Capability Names and Descriptions.
Avoid using policy inheritance until you understand fully how it forms the policy for a given subject. Even then, use it sparingly, reserving it generally for cases where a default subject is configured least privilege, with no readable/writable/executable objects and no capabilities.
Wherever possible, avoid granting both write and execute permission to objects. This gives a potential attacker the ability to execute arbitrary code. Similar to how PaX prevents arbitrary code execution within a given process' address space, one of your goals in creating policies is to prevent this on the file system as well.
Be careful using the suppression ('s') object flag, especially when applying it to / to ignore accesses a program does not really need to operate correctly. A change in glibc or another library the subject uses could cause the application to fail in a way that will be difficult to debug (unless your first step is to remove the suppression flag).