Dividing Monomials

Simplify Expressions by Applying Several Properties

We'll now summarize all the properties of exponents so they are all together to refer to as we simplify expressions using several properties. Notice that they are now defined for whole number exponents.

Summary of Exponent Properties

If \(a\) and \(b\) are real numbers, and \(m\) and \(n\) are whole numbers, then

Product Property \(a^{m} \cdot a^{n}=a^{m+n}\)m+n
Power Property \(\left(a^{m}\right)^{n}=a^{m \cdot n}\)
Product to a Power \((a b)^{m}=a^{m} b^{m}\)
Quotient Property \( \begin{array}{l} \dfrac{a^{m}}{b^{m}}=a^{m-n}, a \neq 0, m>n \\ \dfrac{a^{m}}{a^{n}}=\dfrac{1}{a^{n-m}}, a \neq 0, n > m \end{array} \)
Zero Exponent Definition \(a^{0}=1, a \neq 0\)
Quotient to a Power Property \(\left(\dfrac{a}{b}\right)^{m}=\dfrac{a^{m}}{b^{m}}, b \neq 0\)

Example 6.65

Simplify: \(\dfrac{\left(y^{4}\right)^{2}}{y^{6}}\).

Solution
  \(\dfrac{\left(y^{4}\right)^{2}}{y^{6}}\)
Multiply the exponents in the numerator. \(\dfrac{y^{8}}{y^{6}}\)
Subtract the exponents. \(y^{2}\)
Try It 6.129

Simplify: \(\dfrac{\left(m^{5}\right)^{4}}{m^{7}}\).

Try It 6.130

Simplify: \(\dfrac{\left(k^{2}\right)^{6}}{k^{7}}\).

Example 6.66

Simplify: \(\dfrac{b^{12}}{\left(b^{2}\right)^{6}}\).

Solution
  \(\dfrac{b^{12}}{\left(b^{2}\right)^{6}}\)
Multiply the exponents in the numerator. \(\dfrac{b^{12}}{b^{12}}\)
Subtract the exponents. \(b^{0}\)
Simplify. \(1\)
Try It 6.131

Simplify: \(\dfrac{n^{12}}{\left(n^{3}\right)^{4}}\).

Try It 6.132

Simplify: \(\dfrac{x^{15}}{\left(x^{3}\right)^{5}}\).

Example 6.67

Simplify: \(\left(\dfrac{y^{9}}{y^{4}}\right)^{2}\).

Solution
  \(\left(\dfrac{y^{9}}{y^{4}}\right)^{2}\)
Remember parentheses come before exponents.
Notice the bases are the same, so we can simplify inside the parentheses. Subtract the exponents.
\(\left(y^{5}\right)^{2}\)
Multiply the exponents. \(y^{10}\)
Try It 6.133

Simplify: \(\left(\dfrac{r^{5}}{r^{3}}\right)^{4}\).

Try It 6.134

Simplify: \(\left(\dfrac{v^{6}}{v^{4}}\right)^{3}\).

Example 6.68

Simplify: \(\left(\dfrac{j^{2}}{k^{3}}\right)^{4}\).

Solution

Here we cannot simplify inside the parentheses first, since the bases are not the same.

  \(\left(\dfrac{j^{2}}{k^{3}}\right)^{4}\)
Raise the numerator and denominator to the third power
using the Quotient to a Power Property, \(\left(\dfrac{a}{b}\right)^{m}=\dfrac{a^{m}}{b^{m}} .\).
 
Use the Power Property and simplify. \(\dfrac{j^{8}}{k^{12}}\)
Try It 6.135

Simplify: \(\left(\dfrac{a^{3}}{b^{2}}\right)^{4}\).

Try It 6.136

Simplify: \(\left(\dfrac{q^{7}}{r^{5}}\right)^{3}\).

Example 6.69

Simplify: \(\left(\dfrac{2 m^{2}}{5 n}\right)^{4}\).

Solution
  \(\left(\dfrac{2 m^{2}}{5 n}\right)^{4}\)
Raise the numerator and denominator to the fourth power, using the Quotient to a Power Property, \(\left(\dfrac{a}{b}\right)^{m}=\dfrac{a^{m}}{b^{m}}\). \(\dfrac{\left(2 m^{2}\right)^{4}}{(5 n)^{4}}\))4
Raise each factor to the fourth power. \(\dfrac{\left(2 m^{2}\right)^{4}}{(5 n)^{4}}\)
Use the Power Property and simplify. \(\dfrac{16 m^{8}}{625 n^{4}}\)
Try It 6.137

Simplify: \(\left(\dfrac{7 x^{3}}{9 y}\right)^{2}\).

Try It 6.138

Simplify: \(\left(\dfrac{3 x^{4}}{7 y}\right)^{2}\).

Example 6.70

Simplify: \(\dfrac{\left(x^{3}\right)^{4}\left(x^{2}\right)^{5}}{\left(x^{6}\right)^{5}}\).

Solution
  \(\dfrac{\left(x^{3}\right)^{4}\left(x^{2}\right)^{5}}{\left(x^{6}\right)^{5}}\)
Use the Power Property, \(\left(a^{m}\right)^{n}=a^{m \cdot n}\). \(\dfrac{\left(x^{12}\right)\left(x^{10}\right)}{\left(x^{30}\right)}\)
Add the exponents in the numerator. \(\dfrac{x^{22}}{x^{30}}\)
Use the Quotient Property, aman=1an−m. \(\dfrac{1}{x^{8}}\)
Try It 6.139

Simplify: \(\dfrac{\left(a^{2}\right)^{3}\left(a^{2}\right)^{4}}{\left(a^{4}\right)^{5}}\).

Try It 6.140

Simplify:\(\dfrac{\left(p^{3}\right)^{4}\left(p^{5}\right)^{3}}{\left(p^{7}\right)^{6}}\).

Example 6.71

Simplify: \(\dfrac{\left(10 p^{3}\right)^{2}}{(5 p)^{3}\left(2 p^{5}\right)^{4}}\).

Solution
  \(\dfrac{\left(10 p^{3}\right)^{2}}{(5 p)^{3}\left(2 p^{5}\right)^{4}}\)
Use the Product to a Power Property, \((a b)^{m}=a^{m} b^{m}\). \(\dfrac{(10)^{2}\left(p^{3}\right)^{2}}{(5)^{3}(p)^{3}(2)^{4}\left(p^{5}\right)^{4}}\)
Use the Power Property, \(\left(a^{m}\right)^{n}=a^{m \cdot n}\). \(\dfrac{100 p^{6}}{125 p^{3} \cdot 16 p^{20}}\)
Add the exponents in the denominator. \(\dfrac{100 p^{6}}{125 \cdot 16 p^{23}}\)
Use the Quotient Property, \(\dfrac{a^{m}}{a^{n}}=\dfrac{1}{a^{n-m}}\). \(\dfrac{100}{125 \cdot 16 p^{17}}\)
Simplify. \(\dfrac{1}{20 p^{17}}\)
Try It 6.141

Simplify: \(\dfrac{\left(3 r^{3}\right)^{2}\left(r^{3}\right)^{7}}{\left(r^{3}\right)^{3}}\).

Try It 6.142

Simplify: \(\dfrac{\left(2 x^{4}\right)^{5}}{\left(4 x^{3}\right)^{2}\left(x^{3}\right)^{5}}\).