Dividing Monomials
Simplify Expressions Using the Quotient to a Power Property
Now we will look at an example that will lead us to the Quotient to a Power Property.
\(\left(\dfrac{x}{y}\right)^{3}\) | |
This means: | \(\dfrac{x}{y} \cdot \dfrac{x}{y} \cdot \dfrac{x}{y}\) |
Multiply the fractions. | \(\dfrac{x \cdot x \cdot x}{y \cdot y \cdot y}\) |
Write with exponents. | \(\dfrac{x^{3}}{y^{3}}\) |
Notice that the exponent applies to both the numerator and the denominator.
We write: | \(\left(\dfrac{x}{y}\right)^{3}\) |
\(\dfrac{x^{3}}{y^{3}}\) |
This leads to the Quotient to a Power Property for Exponents.
Quotient to a Power Property for Exponents
If \(a\) and \(b\) are real numbers, \(b \neq 0\), and \(m\) is a counting number, then
\(\left(\dfrac{a}{b}\right)^{m}=\dfrac{a^{m}}{b^{m}}\)
To raise a fraction to a power, raise the numerator and denominator to that power.
An example with numbers may help you understand this property:
\(\begin{aligned}\left(\dfrac{2}{3}\right)^{3} &=\dfrac{2^{3}}{3^{3}} \\ \dfrac{2}{3} \cdot \dfrac{2}{3} \cdot \dfrac{2}{3} &=\dfrac{8}{27} \\ \dfrac{8}{27} &=\dfrac{8}{27}\text{✓} \end{aligned}\)
Example 6.64
Simplify:
- \(\left(\dfrac{3}{7}\right)^{2}\)
- \(\left(\dfrac{b}{3}\right)^{4}\)
- \(\left(\dfrac{k}{j}\right)^{3}\).
Solution
-
\(\left(\dfrac{3}{7}\right)^{2}\) Use the Quotient Property, \(\left(\dfrac{a}{b}\right)^{m}=\dfrac{a^{m}}{b^{m}}\). \(\dfrac{3^{2}}{7^{2}}\) Simplify. \(\dfrac{9}{49}\) -
\(\left(\dfrac{b}{3}\right)^{4}\) \(\left(\dfrac{a}{b}\right)^{m}=\dfrac{a^{m}}{b^{m}}\). \(\dfrac{b^{4}}{3^{4}}\) Simplify. \(\dfrac{b^{4}}{81}\) -
\(\left(\dfrac{k}{j}\right)^{3}\) Raise the numerator and denominator to the third power. \(\dfrac{k^{3}}{j^{3}}\)
Try It 6.127
Simplify:
- \(\left(\dfrac{5}{8}\right)^{2}\)
- \(\left(\dfrac{p}{10}\right)^{4}\)
- \(\left(\dfrac{m}{n}\right)^{7}\).
Try It 6.128
Simplify:
- \(\left(\dfrac{1}{3}\right)^{3}\)
- \(\left(\dfrac{-2}{q}\right)^{3}\)
- \(\left(\dfrac{w}{x}\right)^{4}\).