Dividing Monomials

Simplify Expressions Using the Quotient to a Power Property

Now we will look at an example that will lead us to the Quotient to a Power Property.

  \(\left(\dfrac{x}{y}\right)^{3}\)
This means: \(\dfrac{x}{y} \cdot \dfrac{x}{y} \cdot \dfrac{x}{y}\)
Multiply the fractions. \(\dfrac{x \cdot x \cdot x}{y \cdot y \cdot y}\)
Write with exponents. \(\dfrac{x^{3}}{y^{3}}\)

 

Notice that the exponent applies to both the numerator and the denominator.

We write: \(\left(\dfrac{x}{y}\right)^{3}\)
  \(\dfrac{x^{3}}{y^{3}}\)


This leads to the Quotient to a Power Property for Exponents.

Quotient to a Power Property for Exponents

If \(a\) and \(b\) are real numbers, \(b \neq 0\), and \(m\) is a counting number, then

\(\left(\dfrac{a}{b}\right)^{m}=\dfrac{a^{m}}{b^{m}}\)

To raise a fraction to a power, raise the numerator and denominator to that power.

An example with numbers may help you understand this property:

\(\begin{aligned}\left(\dfrac{2}{3}\right)^{3} &=\dfrac{2^{3}}{3^{3}} \\ \dfrac{2}{3} \cdot \dfrac{2}{3} \cdot \dfrac{2}{3} &=\dfrac{8}{27} \\ \dfrac{8}{27} &=\dfrac{8}{27}\text{✓} \end{aligned}\)

Example 6.64

Simplify: 

  1. \(\left(\dfrac{3}{7}\right)^{2}\)
  2. \(\left(\dfrac{b}{3}\right)^{4}\)
  3. \(\left(\dfrac{k}{j}\right)^{3}\).
Solution
  1.   \(\left(\dfrac{3}{7}\right)^{2}\)
    Use the Quotient Property, \(\left(\dfrac{a}{b}\right)^{m}=\dfrac{a^{m}}{b^{m}}\). \(\dfrac{3^{2}}{7^{2}}\)
    Simplify. \(\dfrac{9}{49}\)

  2.   \(\left(\dfrac{b}{3}\right)^{4}\)
    \(\left(\dfrac{a}{b}\right)^{m}=\dfrac{a^{m}}{b^{m}}\). \(\dfrac{b^{4}}{3^{4}}\)
    Simplify. \(\dfrac{b^{4}}{81}\)

  3.   \(\left(\dfrac{k}{j}\right)^{3}\)
    Raise the numerator and denominator to the third power. \(\dfrac{k^{3}}{j^{3}}\)
Try It 6.127

Simplify: 

  1. \(\left(\dfrac{5}{8}\right)^{2}\)
  2. \(\left(\dfrac{p}{10}\right)^{4}\)
  3. \(\left(\dfrac{m}{n}\right)^{7}\).
Try It 6.128

Simplify: 

  1. \(\left(\dfrac{1}{3}\right)^{3}\)
  2. \(\left(\dfrac{-2}{q}\right)^{3}\)  
  3. \(\left(\dfrac{w}{x}\right)^{4}\).