Creating and Evaluating Composite Functions Practice

Practice Problems

  1. Given:

    \begin{aligned}&f(b)=\sqrt[3]{2b}+1\\\\&g(b)=28-b\end{aligned}

    Vadim tried to evaluate (g\circ f)(-4), but he made a mistake. Here is his work.
     
    \begin{array}{lrl}\text{Step 1}&(g\circ f)(-4) &=f(g(-4))\\\\\text{Step 2}&g({-4})&=28-({-4})\\\\&&={32}\\\\\text{Step 3}&f(g(-4))&=f(32)\\\\&&=\sqrt[3]{2({32})}+1 \\\\&&=\sqrt[3]{64}+1\\\\&&=5\end{array}

    What is the mistake in Vadim's work?

    Choose 1 answer:

    1. (g \circ f)(-4) = g(f(-4)), not f(g(-4)).
    2. g(-4)=24, not  32
    3. f(32)=9, not 5.

  2. \begin{aligned}&g(x)=-20-3x\\\\&h(x)=\left(\dfrac{1}{2}\right)^x\end{aligned}

    Evaluate.

    (g\circ h) (-2)=


  3. \begin{aligned}&f(t)=\dfrac{t}{t-8}\\\\&h(t)=-2t\end{aligned}

    Evaluate.

    f(h(-5))=


  4. Given:

    \begin{aligned}&f(a)=-4(a+8)\\\\&g(a)=\dfrac{2}{3}a\end{aligned}

    Susan tried to evaluate (f\circ g)(-15), but she made a mistake. Here is her work.

    \begin{array}{lrl}\text{Step 1}&g(-15) &= \dfrac{2}{3}(-15)\\\\&&=-10\\\\\text{Step 2}&f(-15) &= -4(-15+8)\\\\&&= 28\\\\\text{Step 3}&(f \circ g)(-15) &=28 \cdot -10\\\\&&=-280\end{array}

    What is the mistake in Susan's work?

    Choose 1 answer:

    1. f(-15)=68, not 28.
    2. (f \circ g)(-15) = f(g(-15)), not  f(-15) \cdot g(-15).
    3. (f \circ g)(-15) = g(f(-15)), not f(-15) \cdot g(-15).

Source: Khan Academy, https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:composite/x9e81a4f98389efdf:composing/e/evaluate-composite-functions-from-formulas
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.