Practice Problems

Site: Saylor Academy
Course: MA005: Calculus I
Book: Practice Problems
Printed by: Guest user
Date: Saturday, September 7, 2024, 7:40 PM

Description

Work through the odd-numbered problems 1-37. Once you have completed the problem set, check your answers.

Table of contents

1. Match the graphs of the three functions in Fig. 8 with the graphs of their derivatives.


In problems 3-5, find the slope \mathrm{m}_{\mathrm{sec}} of the secant line through the two given points and then calculate m_{\tan }=\lim _{h \rightarrow 0} \mathrm{~m}_{\mathrm{sec}}.

3. \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}

(a) (-2,4),\left(-2+\mathrm{h},(-2+\mathrm{h})^{2}\right)

(b) (0.5,0.25),\left(0.5+\mathrm{h},(0.5+\mathrm{h})^{2}\right)

5. f(x)=7 x-x^{2}

(a) (1,6),\left(1+\mathrm{h}, 7(1+\mathrm{h})-(1+\mathrm{h})^{2}\right)

(b) \left(x, 7 x-x^{2}\right),\left(x+h, 7(x+h)-(x+h)^{2}\right)

7. Use the graph in Fig. 10 to estimate the values of these limits. (It helps to recognize what the limit represents.)


(a) \lim\limits_{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}

(b) \lim\limits_{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}

(c) \lim\limits_{h \rightarrow 0} \frac{f(2+h)-1}{h}

(d) \lim\limits_{w \rightarrow 0} \frac{f(3+w)-f(3)}{w}

(e) \lim\limits_{h \rightarrow 0} \frac{f(4+h)-f(4)}{h}

(f) \lim\limits_{s \rightarrow 0} \frac{f(5+s)-f(5)}{s}


In problems 9 – 11, use the Definition of the derivative to calculate f '(x) and then evaluate f '(3).

9. f(x) = x^2 + 8 

11. f(x) = 2x^3 – 5x 

13. Graph f(x) = x , g(x) = x^2 + 3 and h(x) = x^2 – 5. Calculate the derivatives of f, g, and h

In problems 15 – 17, find the slopes and equations of the lines tangent to y = f(x) at the given points. 

15. f(x) = x^2 + 8 at (1,9) and (–2,12) 

17. f(x) = sin(x) at (π, 0) and (π/2,1) 

19. (a) Find the equation of the line tangent to the graph of y = x^2 + 1 at the point (2,5)

(b) Find the equation of the line perpendicular to the graph of y = x^2 + 1 at (2,5)

(c) Where is the tangent to the graph of y = x^2 + 1 horizontal? 

(d) Find the equation of the line tangent to the graph of y = x^2 + 1 at the point (p,q)

(e) Find the point(s) (p,q) on the graph of y = x^2 + 1 so the tangent line to the curve at (p,q) goes through the point (1, –7).

21. (a) Find the angle that the tangent line to y = x^2 at (1,1) makes with the x–axis. 

(b) Find the angle that the tangent line to y = x^3 at (1,1) makes with the x–axis. 

(c) The curves y = x^2 and y = x^3 intersect at the point (1,1). Find the angle of intersection of the two curves (actually the angle between their tangent lines) at the point (1,1)

23. Fig. 13 shows the graph of the height of an object at time t. Sketch the graph of the object's upward velocity. What are the units for each axis on the velocity graph? 


25. A rock dropped into a deep hole will drop d(x) = 16x^2 feet in x seconds. 

(a) How far into the hole will the rock be after 4 seconds? 5 seconds? 

(b) How fast will it be falling at exactly 4 seconds? 5 seconds? x seconds? 

27. It costs C(x) = √x dollars to produce x golf balls. What is the marginal production cost to make a golf ball? What is the marginal production cost when x = 25? when x= 100? (Include units.) 

29. Define A(x) to be the area bounded by the x–axis, the line y = x, and a vertical line at x (Fig. 15). 


(a) Evaluate A(0), A(1), A(2) and A(3)

(b) Find a formula which represents A(x) for all x ≥ 0: A(x) =

(c) Determine \frac{\mathrm{d} \mathrm{A}(\mathrm{x})}{\mathrm{dx}}.

(d) What does \frac{\mathrm{d} \mathrm{A}(\mathrm{x})}{\mathrm{dx}} represent?

31. Find (a) D\left(x^{9}\right)

(b) \frac{\mathbf{d} x^{2 / 3}}{d x}

(c) D\left(\frac{1}{x^{4}}\right)

(d) \mathrm{D}\left(\mathrm{x}^{\pi}\right)

(e) \frac{\mathbf{d}|\mathrm{x}+5|}{\mathbf{d x}}

In problems 31 – 37, find a function f which has the given derivative. (Each problem has several correct answers, just find one of them.) 

33. f^{\prime}(x)=3 x^{2}+8 x

35. \frac{\mathbf{d} \mathrm{f}(\mathrm{t})}{\mathrm{dt}}=5 \cos (\mathrm{t})

37. \mathrm{D}(\mathrm{f}(\mathrm{x}))=\mathrm{x}+\mathrm{x}^{2}


Source: Dale Hoffman, https://s3.amazonaws.com/saylordotorg-resources/wwwresources/site/wp-content/uploads/2012/12/MA005-3.2-Definition-of-Derivative.pdf
Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License.

1. (a) derivative of g

(b) derivative of \mathrm{h}

(c) derivative of \mathrm{f}


3. (a) \mathrm{m}_{\mathrm{sec}}=\mathrm{h}-4, \mathrm{~m}_{\tan }=\lim\limits_{h \rightarrow 0} \mathrm{~m}_{\mathrm{sec}}=-4.

(b) \mathrm{m}_{\mathrm{sec}}=\mathrm{h}+1, \mathrm{~m}_{\tan }=\lim\limits_{h \rightarrow 0} \mathrm{~m}_{\mathrm{sec}}=1.


5. (a) \mathrm{m}_{\mathrm{sec}}=5-\mathrm{h}, \mathrm{m}_{\tan }=\lim\limits_{h \rightarrow 0} \mathrm{~m}_{\mathrm{sec}}=5

(b) \mathrm{m}_{\mathrm{sec}}=7-2 \mathrm{x}-\mathrm{h}, \mathrm{m}_{\tan }=\lim\limits_{h \rightarrow 0} \mathrm{~m}_{\mathrm{sec}}=7-2 \mathrm{x}.


7. -1

(b) -1

(c) 0

(d) +1

(e) DNE

(f) DNE


9. \mathrm{f}^{\prime}(\mathrm{x})=\lim\limits_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim\limits_{h \rightarrow 0} \frac{\left\{(x+h)^{2}+8\right\}-\left\{x^{2}+8\right\}}{h}=\lim\limits_{h \rightarrow 0} \frac{2 x h+h^{2}}{h}=\lim\limits_{h \rightarrow 0} 2 x+h=2 x \cdot \mathrm{f}^{\prime}(3)=6.


11. \mathrm{f}^{\prime}(\mathrm{x})=\lim\limits_{h \rightarrow 0} \frac{\left\{2(x+h)^{3}-5(x+h)\right\}-\left\{2 x^{3}-5 x\right\}}{h}=\lim\limits_{h \rightarrow 0} \frac{6 x^{2} h+6 x h^{2}+2 h^{3}-5 h}{h}=6 x^{2}-5 . \mathrm{f}^{\prime}(3)=49.


13. For any constant \mathrm{C}, if \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{C}, then

\mathrm{f}^{\prime}(\mathrm{x})==\lim\limits_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim\limits_{h \rightarrow 0} \frac{\left\{(x+h)^{2}+C\right\}-\left\{x^{2}+C\right\}}{h}=\lim\limits_{h \rightarrow 0} \frac{2 x h+h^{2}}{h}=\lim\limits_{h \rightarrow 0} 2 \mathrm{x}+\mathrm{h}=2 \mathrm{x}

The graphs of f(x) = x^2, g(x) = x^2 +3 and h(x) = x^2 – 5 are "parallel" parabolas: g is f shifted up 3 units, and h is f shifted down 5 units.


15. f '(x) = 2x. Then f '(1) = 2 and the equation of the tangent line at (1,9) is y – 9 = 2(x – 1) or y = 2x + 7.        

f '(–2) = – 4 and the equation of the tangent line at (–2,12) is y – 12 = –4(x + 2) or y = –4x + 4.


17. f '(x) = cos(x). Then f '(π) = cos(π) = –1 and the equation of the tangent line at (π,0) is y – 0 = –1(x – π) or y = –x + π

f '(π/2) = cos(π/2) = 0 and the equation of the tangent line at (π/2,1) is y – 1 = 0(x – π/2) or y = 1.


19. (a) y – 5 = 4(x – 2) or y = 4x – 3 (b) x + 4y = 22 or y = –0.25x + 5.5 

(c) f '(x) = 2x so the tangent line is horizontal when x = 0: at the point (0,1).

(d) f '(p) = 2p (the slope of the tangent line) so y – q = 2p(x – p)  or y = 2px + (q – 2p^2)

Since q = p^2 + 1, the equation of the tangent line becomes y = 2px + (p^2 + 1 – 2p^2) = 2px – p^2 + 1

(e) We need p such that –7 = 2p(1) – p2 + 1 or p2 – 2p – 8 = 0. Then p = –2, 4. There are two points with the property we want: (–2, 5) and (4, 17).


21. (a) y ' = 2x, so when x = 1, y ' = 2. Angle = arctan(2) ≈ 1.107 radians ≈ 63°

(b) y ' = 3x^2, so when x = 1, y ' = 3. Angle = arctan(3) ≈ 1.249 radians ≈ 72°

(c) Angle ≈ 1.249 – 1.107 radians = 0.142 radians (or  angle = 72° – 63° = 9°)


23. Graph. On the graph of upward velocity, the units on the horizontal axis are "seconds" and the units on the vertical axis are "feet per second".


25. (a) d(4) = 256 ft. d(5) = 400 ft.  (b) d '(x) = 32x  d '(4) = 128 ft/sec d '(5) = 160 ft/sec.


27. C(x) = √x dollars to produce x golf balls.

Marginal production cost is \mathrm{C}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}} \quad dollars per golf ball. \mathrm{C}^{\prime}(25)=\frac{1}{2 \sqrt{25}}=\frac{1}{10} dollars per golf ball. \mathrm{C}^{\prime}(100)=\frac{1}{2 \sqrt{100}}=\frac{1}{20} dollars per golf ball.


29.

(a) \mathrm{A}(0)=0, \mathrm{~A}(1)=1 / 2, \mathrm{~A}(2)=2 and \mathrm{A}(3)=9 / 2

(b) \mathrm{A}(\mathrm{x})=\mathrm{x}^{2} / 2(\mathrm{x} \geq 0)

(c) \frac{\mathrm{d} \mathrm{A}(\mathrm{x})}{\mathrm{dx}}=\mathrm{x}.

(d) \frac{\mathrm{d} \mathrm{A}(\mathrm{x})}{\mathrm{dx}} represents the rate at which \mathrm{A}(\mathrm{x}) is increasing, the rate at which area is accumulating.


31 .

(b) \frac{2}{3 \mathrm{x}^{1 / 3}}

(c) \frac{-4}{x^{5}}

(d) \pi \mathrm{x}^{\pi-1}

(e) 1 if x>-5 and -1 if x


33. f(x)=x^{3}+4 x^{2} (plus any constant)


35.f(x)=5 \cdot \sin (t)


37. f(x)=\frac{1}{2} x^{2}+\frac{1}{3} x^{3}