Practice Problems

Answers

1. See Fig. 3.3P1.

Fig. 3.3P1.

3. See Fig. 3.3P3.

Fig. 3.3P3.

5. See Fig. 3.3P5.

Fig. 3.3P5.

7. \mathrm{A}-\mathrm{Q}, \mathrm{B}-\mathrm{P}, \mathrm{C}-\mathrm{R}


9. f^{\prime}(x)=\frac{1}{x} > 0 for x > 0 so f(x)=\ln (x) is increasing on (0, \infty).


11. If f is increasing then f(1) < f(\pi) so f(1) and f(\pi) cannot both equal 2.


13. (a) x=3, x=8
(b) maximum at x=8
(c) none (or only at right endpoint)


15. Relative maximum height at \mathrm{x}=6. Relative minimum height at \mathrm{x}=8.


17. f(x)=x^{3}-3 x^{2}-9 x-5 has a relative minimum at (3,-32) and a relative maximum at (-1,0).


19. \mathrm{h}(\mathrm{x})=\mathrm{x}^{4}-8 \mathrm{x}^{2}+3 has a relative maximum at (0,3) and relative minimums at (2,-13) and (-2,-13).


21. \mathrm{r}(\mathrm{t})=2\left(\mathrm{t}^{2}+1\right)^{-1} has a relative maximum at (0,2) and no relative minimums.


23. No positive roots. f(x)=2 x+\cos (x) is continuous. f(0)=1 > 0. Since \mathrm{f}^{\prime}(\mathrm{x})=2-\sin (\mathrm{x}) > 0 for all \mathrm{x}, \mathrm{f} is increasing and never decreases back to the \mathrm{x}-axis (a root).


25. \mathrm{h}(\mathrm{x})=\mathrm{x}^{3}+9 \mathrm{x}-10 and \mathrm{h}(1)=0. \mathrm{h}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}+9=3\left(\mathrm{x}^{2}+3\right) > 0 for all \mathrm{x} so \mathrm{h} is always increasing and can cross the \mathrm{x}-axis at most at one place. Since the graph of \mathrm{h} crosses the \mathrm{x}-axis at \mathrm{x}=1, that is the only root of \mathrm{h}.


27.

Fig. 3.3P27


29. (a) \mathrm{h}(\mathrm{x})=\mathrm{x}^{2}, \mathrm{x}^{2}+1, \mathrm{x}^{2}-7, or, in general, \mathrm{x}^{2}+\mathrm{C} for any constant \mathrm{C}.
(b) f(x)=x^{2}+C for some value C and 20=f(3)=3^{2}+C so C=20-9=11. f(x)=x^{2}+11.
(c) $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{C} for some value \mathrm{C} and 7=\mathrm{g}(2)=2^{2}+\mathrm{C} so \mathrm{C}=7-4=3. \mathrm{g}(\mathrm{x})=\mathrm{x}^{2}+3.