Practice Problems

Site: Saylor Academy
Course: MA005: Calculus I
Book: Practice Problems
Printed by: Guest user
Date: Friday, May 3, 2024, 6:22 PM

Description

Work through the odd-numbered problems 1-49. Once you have completed the problem set, check your answers.

Table of contents

Problems

1. \ln (5 x)


3. \ln \left(x^{k}\right)


5. \ln (\cos (x))


7. \log _{2} 5 \mathrm{x}


9. \ln (\sin (x))


11. \log _{2}(\sin (x))


13. \log _{5} 5^{x}


15. x \cdot \ln (3 x)


17. \frac{\ln (x)}{x}


19. \ln (\sqrt{5 x-3})


21. \frac{\mathbf{d}}{\mathbf{d} \mathbf{w}} \cos (\ln (\mathrm{w}))


23. \frac{\mathbf{d}}{\mathbf{d t}} \ln (\sqrt{t+1})


25. \mathrm{D}\left(5^{\sin (\mathrm{x})}\right)


27. \frac{\mathbf{d}}{\mathbf{d x}} \ln (\sec (\mathrm{x})+\tan (\mathrm{x}))


29. Find a point \mathrm{P} on the graph of \mathrm{f}(\mathrm{x})=\ln (\mathrm{x}) so the tangent line to \mathrm{f} at \mathrm{P} goes through the origin.


31. Rumor. The percent of a population, \mathrm{p}(\mathrm{t}), who have heard a rumor by time \mathrm{t} is often modeled p(t)=\frac{100}{1+A e^{-t}}=100\left(1+A e^{-t}\right)^{-1} for some positive constant A. Calculate how fast the rumor is spreading, \frac{\mathbf{d} \mathrm{p}(\mathrm{t})}{\mathbf{d t}}.


In problems 33 – 41, find a function with the given derivative. 

33. \mathrm{f}^{\prime}(\mathrm{x})=\frac{8}{\mathrm{x}}


35. f^{\prime}(x)=\frac{\cos (x)}{3+\sin (x)}


37. \mathrm{g}^{\prime}(\mathrm{x})=3 \mathrm{e}^{5 \mathrm{x}}


39. f^{\prime}(x)=2 x \cdot e^{\left(x^{2}\right)}


41. h^{\prime}(x)=\frac{\cos (x)}{\sin (x)}


Problems 43 – 47 involve parametric equations.

43. At time t minutes, robot A is at (t, 2 t+1) and robot B is at \left(t^{2}, 2 t^{2}+1\right).

(a) Where is each robot when \mathrm{t}=0 and \mathrm{t}=1 ?

(b) Sketch the path each robot follows during the first minute.

(c) Find the slope of the tangent line, \mathrm{dy} / \mathrm{dx}, to the path of each robot at \mathrm{t}=1 minute.

(d) Find the speed of each robot at \mathrm{t}=1 minute.

(e) Discuss the motion of a robot which follows the path (\sin (\mathrm{t}), 2 \sin (\mathrm{t})+1) for 20 minutes.


45. For the parametric graph in Fig. 9, determine whether \frac{d x}{d t}, \frac{d y}{d t} and \frac{d y}{d x} are positive, negative or zero when \mathrm{t}=1 and \mathrm{t}=3.


47. x(t)=R \cdot(t-\sin (t)), y(t)=R \cdot(1-\cos (t)). (a) Graph (x(t), y(t)) for 0 \leq t \leq 4 \pi.

(b) Find \mathrm{dx} / \mathrm{dt}, \mathrm{dy} / \mathrm{dt}, the tangent slope \mathrm{dy} / \mathrm{dx}, and speed when \mathrm{t}=\pi / 2 and \pi.

(The graph of (\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})) is called a cycloid and is the path of a light attached to the edge of a rolling wheel with radius \mathrm{R}).


49. Describe the path of a robot whose location at time \mathrm{t} is

(a) (3 \cdot \cos (\mathrm{t}), 5 \cdot \sin (\mathrm{t}))

(b) (\mathrm{A} \cdot \cos (\mathrm{t}), \mathrm{B} \cdot \sin (\mathrm{t}))

(c) Give the parametric equations so the robot will move along the same path as in part (a) but in the opposite direction.



Source: Dale Hoffman, https://s3.amazonaws.com/saylordotorg-resources/wwwresources/site/wp-content/uploads/2012/12/MA005-3.6-Some-Applications-of-the-Chain-Rule.pdf
Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License.

Answers

1. \mathbf{D}(\ln (5 \mathrm{x}))=\frac{1}{5 \mathrm{x}} 5=\frac{1}{\mathrm{x}}


3. \mathbf{D}\left(\ln \left(\mathrm{x}^{\mathrm{k}}\right)\right)=\frac{1}{\mathrm{x}} \mathrm{k} \quad \mathrm{k} \mathrm{x}^{\mathrm{k}-1}=\frac{\mathrm{k}}{\mathrm{x}}


5. \quad \mathbf{D}(\ln (\cos (x)))=\frac{1}{\cos (x)}(-\sin (x))=-\tan (x)


7. \quad \mathbf{D}\left(\log _{2}(5 \mathrm{x})\right)=\frac{1}{5 \mathrm{x} \ln (2)}(5)=\frac{1}{\mathrm{x} \ln (2)}


9. \quad \mathbf{D}(\ln (\sin (x)))=\frac{1}{\sin (x)}(\cos (x))=\cot (x)


11. \quad \mathbf{D}\left(\log _{2}(\sin (x))\right)=\frac{1}{\sin (x)} \frac{1}{\ln (2)}(\cos (x))=\frac{\cot (x)}{\ln (2)}


13. \quad \mathbf{D}\left(\log _{5}\left(5^{\mathrm{x}}\right)\right)=\mathbf{D}(\mathrm{x})=1


15. \quad D(x \ln (3 x))=x \cdot \frac{1}{3 x} \cdot 3+\ln (3 x)=1+\ln (3 x)


17. \quad \mathrm{D}\left(\frac{\ln (\mathrm{x})}{\mathrm{x}}\right)=\frac{\mathrm{x} \cdot \frac{1}{\mathrm{x}}-\ln (\mathrm{x}) \cdot 1}{\mathrm{x}^{2}}=\frac{1-\ln (\mathrm{x})}{\mathrm{x}^{2}}


19. \mathbf{D}\left(\ln \left((5 \mathrm{x}-3)^{1 / 2}\right)\right)=\frac{1}{(5 \mathrm{x}-3)^{1 / 2}} \cdot \mathrm{D}\left((5 \mathrm{x}-3)^{1 / 2}\right)=\frac{1}{(5 \mathrm{x}-3)^{1 / 2}} \cdot \frac{1}{2} \cdot(5 \mathrm{x}-3)^{-1 / 2} \cdot \mathrm{D}(5 \mathrm{x}-3)=\frac{5}{2} \cdot \frac{1}{5 \mathrm{x}-3}


21. \frac{\mathrm{d}}{\mathrm{dw}}(\cos (\ln (\mathrm{w})))=\{-\sin (\ln (\mathrm{w}))\} \frac{1}{\mathrm{w}}=\frac{-\sin (\ln (\mathrm{w}))}{\mathrm{w}}


23. \quad \frac{\mathrm{d}}{\mathrm{dt}}(\ln (\sqrt{\mathrm{t}+1}))=\frac{1}{2(\mathrm{t}+1)}


25. \quad \mathbf{D}\left(5^{\sin (x)}\right)=5^{\sin (x)} \ln (5) \cos (x)


27. \frac{\mathrm{d}}{\mathrm{dx}} \ln (\sec (\mathrm{x})+\tan (\mathrm{x}))=\frac{1}{\sec (\mathrm{x})+\tan (\mathrm{x})}\left(\sec (\mathrm{x}) \tan (\mathrm{x})+\sec ^{2}(\mathrm{x})\right)=\sec (\mathrm{x})


29. \mathrm{f}(\mathrm{x})=\ln (\mathrm{x}), \mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{\mathrm{x}}. Let \mathrm{P}=(\mathrm{p}, \ln (\mathrm{p})). Then we must satisfy \mathrm{y}-\ln (\mathrm{p})=\frac{1}{\mathrm{p}}(\mathrm{x}-\mathrm{p}) with \mathrm{x}=0 and y=0:-\ln (p)=-1 so p=e and P=(e, 1).


31. p(t)=100\left(1+A e^{-t}\right)^{-1} \cdot \frac{\text { d }}{\text { dt }} p(t)=100(-1)\left(1+A e^{-t}\right)^{-2}\left(A e^{-t}(-1)\right)=\frac{100 \mathrm{Ae}^{-t}}{\left(1+A e^{-t}\right)^{2}}.


33. f(x)=8 \ln (x)+ any constant


35. f(x)=\ln (3+\sin (x))+ any constant


37. g(x)=\frac{3}{5} e^{5 x}+ any constant


39. f(x)=e^{x^{2}}+ any constant


41. \mathrm{h}(\mathrm{x})=\ln (\sin (\mathrm{x}))+ any constant


43. A: (t, 2 t+1), B:\left(t^{2}, 2 t^{2}+1\right)

(a) When \mathrm{t}=0, \mathrm{~A} is at (0,1) and \mathrm{B} is at (0,1). \quad When \mathrm{t}=1, \mathrm{~A} is at (1,3), \mathrm{B} is at (1,3)

(b) graph

(c) \quad \mathrm{dy} / \mathrm{d} \mathrm{x}=2 for each, since \mathrm{y}=2 \mathrm{x}+1.

(d) \mathrm{A}: \mathrm{dx} / \mathrm{dt}=1, \mathrm{dy} / \mathrm{dt}=2 so speed =\sqrt{1^{2}+2^{2}}=\sqrt{5}

B: \mathrm{dx} / \mathrm{dt}=2 \mathrm{t}, \mathrm{dy} / \mathrm{dt}=4 \mathrm{t} so speed =\sqrt{(2 \mathrm{t})^{2}+(4 \mathrm{t})^{2}}=2 \sqrt{5} \mathrm{t}. At \mathrm{t}=1, \mathrm{~B}^{\prime} \mathrm{s} speed is 2 \sqrt{5}

(e) This robot moves on the same path \mathrm{y}=2 \mathrm{x}+1, but it moves to the right and up for about 1.57 minutes, reverses its direction and returns to its starting point, then continues left and down for another 1.57 minutes, reverses, and continues to oscillate.


45. When \mathrm{t}=1, \mathrm{dx} / \mathrm{dt}=+, \mathrm{dy} / \mathrm{d} \mathrm{t}=-, \mathrm{dy} / \mathrm{d} \mathrm{x}=-. WHen \mathrm{t}=3, \mathrm{dx} / \mathrm{dt}=-, \mathrm{dy} / \mathrm{dt}=-, \mathrm{dy} / \mathrm{d} \mathrm{x}=+.


47. \begin{aligned} &x(t)=R(t-\sin (t)) \\ &y(t)=R(1-\cos (t)) \end{aligned}

(a) graph

(b) \mathrm{dx} / \mathrm{dt}=\mathrm{R}(1-\cos (\mathrm{t})), \mathrm{dy} / \mathrm{dt}=\mathrm{R} \sin (\mathrm{t}), so \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\sin (\mathrm{t})}{1-\cos (\mathrm{t})}.

When t=\pi / 2, then d x / d t=R, d y / d t=R so d y / d x=1 and speed =\sqrt{R^{2}+R^{2}}=R \sqrt{2}

When \mathrm{t}=\pi, \mathrm{dx} / \mathrm{dt}=2 \mathrm{R}, \mathrm{dy} / \mathrm{dt}=0 so \mathrm{dy} / \mathrm{d} \mathrm{x}=0 and speed =\sqrt{(2 \mathrm{R})^{2}+0}=2 \mathrm{R}.


49. (a) The ellipse \left(\frac{x}{3}\right)^{2}+\left(\frac{y}{5}\right)^{2}=1.

(b) The ellipse \left(\frac{x}{A}\right)^{2}+\left(\frac{y}{B}\right)^{2}=1 if A \neq 0 and B \neq 0

(c) (3 \cdot \cos (\mathrm{t}),-5 \cdot \sin (\mathrm{t})) works.

If A=0, the motion is oscillatory along the x-axis. If \mathrm{B}=0, the motion is oscillatory along the \mathrm{y}-axis.