Practice Problems

Site: Saylor Academy
Course: MA005: Calculus I
Book: Practice Problems
Printed by: Guest user
Date: Friday, May 3, 2024, 2:57 AM

Description

Work through the odd-numbered problems 1-19. Once you have completed the problem set, check your answers.

Table of contents

Problems

1. Fig. 10 shows the tangent line to a function \mathrm{g} at the point (2,2) and a line segment \Delta \mathrm{x} units long. On the figure, label the locations of 

(a) 2+\Delta x on the x-axis, (b) the point (2+\Delta x, g(2+\Delta x)), and

(c) the point \left(2+\Delta x, g(2)+g^{\prime}(2) \cdot \Delta x\right).

(d) How large is the "error", \left(g(2)+g^{\prime}(2) \cdot \Delta x\right)-(g(2+\Delta x))?


In problem 3, find the equation of the tangent line L to the given function f at the given point (\mathrm{a}, \mathrm{f}(\mathrm{a})). Use the value \mathrm{L}(\mathrm{a}+\Delta \mathrm{x}) to approximate the value of \mathrm{f}(\mathrm{a}+\Delta \mathrm{x})

3. (a) \mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}, \mathrm{a}=4, \Delta \mathrm{x}=0.2

(b) \mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}, \mathrm{a}=81, \Delta \mathrm{x}=-1

(c) f(x)=\sin (x), a=0, \Delta x=0.3


In problem 7, use the Linear Approximation Process to derive each approximation formula for \mathrm{x} "close to" \mathbf{0}.

7. (a) \ln (1+x) \approx x

(b) \cos (\mathrm{x}) \approx 1

(c) \tan (\mathrm{x}) \approx \mathrm{x}

(d) \sin (\pi / 2+x) \approx 1


9. A rectangle has one side on the \mathrm{x}-axis, one side on the y-axis, and a corner on the graph of y=x^{2}+1 (Fig. 13).


(a) Use Linear Approximation of the area formula to estimate the increase in the area of the rectangle if the base grows from 2 to 2.3 inches.

(b) Calculate exactly the increase in the area of the rectangle as the base grows from 2 to 2.3 inches.


11. You are minting gold coins which must have a volume of 47.3 \pm 0.1 \mathrm{~cm}^{3}. If you can manufacture the coins to be exactly 2 \mathrm{~cm} high, how much variation can you allow for the radius?


13. Your company is making dice (cubes) and the specifications require that their volume be 87 \pm 2 \mathrm{~cm}^{3}. How long should each side be and how much variance can a side have in order to meet the specifications?


15. The period \mathrm{P}, in seconds, for a pendulum to make one complete swing and return to the release point is \mathrm{P}=2 \pi \sqrt{\mathrm{L} / \mathrm{g}} where \mathrm{L} is the length of the pendulum in feet and \mathrm{g} is 32 \mathrm{feet} / \mathrm{sec}^{2}.

(a) If L=2 feet, what is the period of the pendulum?

(b) If P=1 second, how long is the pendulum?

(c) Estimate the change in \mathrm{P} if \mathrm{L} increases from \mathrm{2} feet to \mathrm{2.1} feet.

(d) The length of a \mathrm{24} foot pendulum is increasing \mathrm{2} inches per hour. Is the period getting longer or shorter? How fast is the period changing?


17. For the function in Fig. 14, estimate the value of \mathbf{d f} when

(a) \mathrm{x}=2 and \mathrm{dx}=1

(b) \mathrm{x}=4 and \mathrm{dx}=-1

(c) x=3 and d x=2


19. Calculate the differentials df of the following functions:

(a) f(x)=x^{2}-3 x

(b) f(x)=e^{x}

(c) f(x)=\sin (5 x)

(d) f(x)=x^{3}+2 x with x=1 and d x=0.2

(e) \mathrm{f}(\mathrm{x})=\ln (\mathrm{x}) with \mathrm{x}=\mathrm{e} and \mathrm{dx}=-0.1

(f) \mathrm{f}(\mathrm{x})=\sqrt{2 \mathrm{x}+5} with \mathrm{x}=22 and \mathrm{dx}=3.



Source: Dale Hoffman, https://s3.amazonaws.com/saylordotorg-resources/wwwresources/site/wp-content/uploads/2012/12/MA005-3.9-Linear-Approximation.pdf
Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License.

Answers

1. See Fig. 1.


3. (a) \mathrm{f}(4)=2, \mathrm{f}^{\prime}(4)=\frac{1}{2 \sqrt{4}}=\frac{1}{4}.

Then y-2=\frac{1}{4}(x-4) so y=\frac{1}{4} x+1 \sqrt{4.2}=\mathrm{f}(4.2) \approx \frac{1}{4}(4.2)+1=2.05.

(b) \mathrm{f}(81)=9, \mathrm{f}^{\prime}(81)=\frac{1}{18} \mathrm{so}

 \begin{aligned} &\mathrm{y}-9=\frac{1}{18}(\mathrm{x}-81) \text { so } \mathrm{y}=\frac{1}{18}(\mathrm{x}-81)+9 \\ &\sqrt{80}=\mathrm{f}(80) \approx \frac{1}{18}(80-81)+9=9-\frac{1}{18} \approx 8.944\end{aligned}

(c) f(0)=0, f^{\prime}(0)=1 so y-0=1(x-0) and y=x. Then \sin (0.3)=f(0.3) \approx 0.3.


5. f(x)=(1+x)^{n}, f^{\prime}(x)=n(1+x)^{n-1}, f(0)=1 and f^{\prime}(0)=n. Then y-1=n(x-0) or y=1+n x. Therefore, (1+x)^{n} \approx 1+n x (when x is close to \mathrm{0}).


7. (a) \mathrm{f}(\mathrm{x})=\ln (1+\mathrm{x}), \mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{1+\mathrm{x}}, and \mathrm{f}^{\prime}(0)=1. Then \mathrm{y}-0=1(\mathrm{x}-0) so \mathrm{y}=\mathrm{x} and \ln (1+\mathrm{x}) \approx \mathrm{x}.

(b) \mathrm{f}(\mathrm{x})=\cos (\mathrm{x}), \mathrm{f}^{\prime}(\mathrm{x})=-\sin (\mathrm{x}), and \mathrm{f}^{\prime}(0)=0. Then \mathrm{y}-1=0(\mathrm{x}-0) so \mathrm{y}=1 and \cos (\mathrm{x}) \approx 1.

(c) f(x)=\tan (x), f^{\prime}(x)=\sec ^{2}(x), and f^{\prime}(0)=1. Then y-0=1(x-0) so y=x and \tan (x) \approx x.

(d) f(x)=\sin \left(\frac{\pi}{2}+x\right), f^{\prime}(x)=\cos \left(\frac{\pi}{2}+x\right), and f^{\prime}(0)=\cos \left(\frac{\pi}{2}+0\right)=0. Then y-1=0(x-0) so y=1 and \sin \left(\frac{\pi}{2}+x\right) \approx 1.


9. (a) Area A(x)=( base ) (height )=x\left(x^{2}+1\right)=x^{3}+x. Then A^{\prime}(x)=3 x^{2}+1 so A^{\prime}(2)=13 Then \quad \Delta \mathrm{A} \approx \mathrm{A}^{\prime}(2) \cdot \Delta \mathrm{x}=(13)(2.3-2)=3.9.

(b) (base)(height) =(2.3)\left((2.3)^{2}+1\right)=14.467. Then the actual difference =14.467-(2)\left(2^{2}+1\right)=4.467.


11. \mathrm{V}=\pi r^{2} \mathrm{~h}=2 \pi \mathrm{r}^{2} and \Delta \mathrm{V}=2 \pi 2 \mathrm{r} \Delta \mathrm{r}=4 \pi \mathrm{r} \Delta \mathrm{r}. Since \mathrm{V}=2 \pi \mathrm{r}^{2}=47.3, we have \mathrm{r}=\sqrt{47.3 /(2 \pi)} \approx 2.7437 \mathrm{~cm}. We know \Delta \mathrm{V}=\pm 0.1 so, using \Delta \mathrm{V}=4 \pi \mathrm{r} \Delta \mathrm{r}, we have \pm 0.1=4 \pi(2.7437) \Delta \mathrm{r} and \Delta r=\frac{\pm 0.1}{4 \pi(2.7437)} \approx \pm 0.0029 \mathrm{~cm}. The required tolerance is \pm 0.0029 \mathrm{~cm}. (C.W. comment: "A coin 2 \mathrm{~cm} high is one hell of a coin! My eyeball estimate is that 47.3 \mathrm{~cm}^{3} of gold weighs around 2 pounds").


13. \mathrm{V}=\mathrm{x}^{3}. When \mathrm{V}=87, \mathrm{x} \approx 4.431 \mathrm{~cm}. \Delta \mathrm{V}=3 \mathrm{x}^{2} \Delta \mathrm{x} so \Delta \mathrm{x}=\frac{\Delta \mathrm{V}}{3 \mathrm{x}^{2}} \approx \frac{2}{3(4.431)^{2}}=0.034 \mathrm{~cm}.


15. \mathrm{P}=2 \pi \sqrt{\frac{\mathrm{L}}{\mathrm{g}}} with \mathrm{g}=32 \mathrm{ft} / \mathrm{sec}^{2}.

(a) \mathrm{P}=2 \pi \sqrt{\frac{2}{32}}=\frac{\pi}{2} \approx 1.57 seconds.

(b) 1=2 \pi \sqrt{\frac{L}{32}} so L=\frac{8}{\pi^{2}} \approx 0.81 feet.

(c) \mathrm{dP}=\frac{2 \pi}{\sqrt{32}} \frac{1}{2 \sqrt{2}} \mathrm{dL}=\frac{2 \pi}{4 \sqrt{2}} \frac{1}{2 \sqrt{2}}(0.1) \approx 0.039 seconds.

(d) 2 \mathrm{in} / \mathrm{hr}=1 / 6 \mathrm{ft} / \mathrm{hr}=\frac{1}{21600} \mathrm{ft} / \mathrm{sec}. \frac{\mathrm{dP}}{\mathrm{dt}}=\frac{2 \pi}{4 \sqrt{2}} \frac{1}{2 \sqrt{24}} \frac{1}{21600} \approx 5.25 \times 10^{-6}.


17. (a) \mathrm{df}=\mathrm{f}^{\prime}(2) \mathrm{dx} \approx(0)(1)=0

(b) \mathrm{df}=\mathrm{f}^{\prime}(4) \mathrm{dx} \approx(0.3)(-1)=-0.3

(c) \mathrm{df}=\mathrm{f}^{\prime}(3) \mathrm{dx} \approx(0.5)(2)=1


19. (a) f(x)=x^{2}-3 x. f^{\prime}(x)=2 x-3. d f=(2 x-3) d x.

(b) f(x)=e^{x} \cdot f^{\prime}(x)=e^{x} \cdot d f=e^{x} d x.

(c) \mathrm{f}(\mathrm{x})=\sin (5 \mathrm{x}). \mathrm{f}^{\prime}(\mathrm{x})=5 \cos (5 \mathrm{x}) \cdot \mathrm{df}=5 \cos (5 \mathrm{x}) \mathrm{dx}.

(d) f(x)=x^{3}+2 x \cdot f^{\prime}(x)=3 x^{2}+2. d f=\left(3 x^{2}+2\right) d x. When x=1 and d x=0.2, d f=\left(3 \cdot 1^{2}+2\right)(0.2)=1.

(e) \mathrm{f}^{\prime}(\mathrm{x})=1 / \mathrm{x} \cdot \mathrm{df}=\frac{1}{\mathrm{x}} \mathrm{dx}. When \mathrm{x}=\mathrm{e} and \mathrm{dx}=-0.1, \mathrm{df}==\frac{1}{\mathrm{e}}(-0.1)=-\frac{1}{10 \mathrm{e}}.

(f) f(x)=\sqrt{2 x+5} \cdot f^{\prime}(x)=\frac{1}{\sqrt{2 x+5}} \cdot d f=\frac{1}{\sqrt{2 x+5}} d x. When x=22 and d x=3, d f=\frac{1}{\sqrt{49}}(3)=\frac{3}{7}.