Practice Problems

Site: Saylor Academy
Course: MA005: Calculus I
Book: Practice Problems
Printed by: Guest user
Date: Saturday, May 18, 2024, 8:09 AM

Description

Work through the odd-numbered problems 1-55. Once you have completed the problem set, check your answers.

Table of contents

In problems 1-19 find \mathrm{dy} / \mathrm{dx} in two ways: (a) by differentiating implicitly and (b) by explicitly solving for \mathrm{y} and then differentiating. Then find the value of \mathrm{dy} / \mathrm{dx} at the given point using your results from both the implicit and the explicit differentiation.

1. x^{2}+y^{2}=100, point (6,8)


3. x^{2}-3 x y+7 y=5, point (2,1)


5. \frac{x^{2}}{9}+\frac{y^{2}}{16}=1, point (0,4)


7. \ln (\mathrm{y})+3 \mathrm{x}-7=0, point (2, \mathrm{e})


9. x^{2}-y^{2}=16, point (5,-3)


11. Find the slopes of the lines tangent to the graph in Fig. 3 at the points (3,1),(3,3), and (4,2).



13. Find the slopes of the lines tangent to the graph in Fig. 4 at the points ((5,0),(5,6), and (-4,3).



In problems 15 – 21, find \mathrm{dy} / \mathrm{dx} using implicit differentiation and then find the slope of the line tangent to the graph of the equation at the given point.

15. y^{3}-5 y=5 x^{2}+7, point (1,3)


17. y^{2}+\sin (y)=2 x-6, point (3,0)


19. \mathrm{e}^{\mathrm{y}}+\sin (\mathrm{y})=\mathrm{x}^{2}-3, point (2,0)


21. x^{2 / 3}+y^{2 / 3}=5, point (8,1)


23. Find the slope of the line tangent to the ellipse in Fig. 5 at the point (1,2).



25. Find \mathrm{y}^{\prime} for y=A x^{2}+B x+C and for x=A y^{2}+B y+C.


27. Find \mathrm{y}^{\prime} for A x^{2}+B x y+C y^{2}+D x+E y+F=0.


29. Find the coordinates of point A where the tangent line to the ellipse in Fig. 5 is horizontal.


31. Find the coordinates of points C and D on the ellipse in Fig. 5.


In problems 33-39 find \mathrm{dy} / \mathrm{dx} in two ways: (a) by using the "usual" differentiation patterns and (b) by using logarithmic differentiation.

33. y=\left(x^{2}+5\right)^{7} \cdot\left(x^{3}-1\right)^{4}


35. y=x^{5} \cdot(3 x+2)^{4}


37. y=e^{\sin (x)}


39. y=\sqrt{25-x^{2}}


In problems 41–47, use logarithmic differentiation to find \mathrm{dy} / \mathrm{dx}.

41. y=x^{\cos (x)}


43. y=x^{4} \cdot(x-2)^{7} \cdot \sin (3 x)


45. y=(3+\sin (x))^{x}


In problems 47-49, use the values in each table to calculate the values of the derivative in the last column.

47. Use Table 1.

Table 1

 \begin{array}{c|c|c|c|c} \mathrm{x} & {\mathrm{f}(\mathrm{x})} & \ln (\mathrm{f}(\mathrm{x})) & \mathrm{D}(\ln (\mathrm{f}(\mathrm{x}))) & \mathrm{f}^{\prime}(\mathrm{x}) \\ \hline 1 & 1 & 0 & 1.2 & \\ 2 & 9 & 2.2 & 1.8 & \\ 3 & 64 & 4.2 & 2.1 & \end{array}


49. Use Table 3.

Table 3

 \begin{array}{c|c|c|c|c} x & {\mathrm{f}(\mathrm{x})} & \ln (\mathrm{f}(\mathrm{x})) & \mathrm{D}(\ln (\mathrm{f}(\mathrm{x}))) & \mathrm{f}^{\prime}(\mathrm{x}) \\ \hline 1 & 5 & 1.6 & -1 & \\ 2 & 2 & 0.7 & 0 & \\ 3 & 7 & 1.9 & 2 & \end{array}


Problems 51–55 illustrate how logarithmic differentiation can be used to verify some differentiation patterns we already know (51 and 52) and to derive some new patterns (53 – 55). Assume that all of the functions are differentiable and that the function combinations are defined.

51. Use logarithmic differentiation on f \cdot g to rederive the product rule: D(f \cdot g)=f \cdot g^{\prime}+g \cdot f^{\prime}.


53. Use logarithmic differentiation on \mathrm{f} \cdot \mathrm{g} \cdot \mathrm{h} to derive a product rule for three functions: \mathbf{D}(\mathrm{f} \cdot \mathrm{g} \cdot \mathrm{h}).


55. Use logarithmic differentiation to determine a pattern for the derivative of \mathrm{f}^{\mathrm{g}}: \mathrm{D}\left(\mathrm{f}^{\mathrm{g}}\right).


Source: Dale Hoffman, https://s3.amazonaws.com/saylordotorg-resources/wwwresources/site/wp-content/uploads/2012/12/MA005-3.10-Implicit-and-Logarithmic-Differentiation.pdf
Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License.

 1. (a) x^{2}+y^{2}=100 so 2 x+2 y y^{\prime}=0 and y^{\prime}=-x / y. At (6,8), y^{\prime}=-6 / 8=-3 / 4.

    (b) y=\sqrt{100-x^{2}} so y^{\prime}=\frac{-x}{\sqrt{100-x^{2}}}. At (6,8), y^{\prime}=\frac{-6}{\sqrt{100-36}}=\frac{-6}{8}=-\frac{3}{4}.


3. (a) x^{2}-3 x y+7 y=5 so 2 x-3\left(y+x y^{\prime}\right)+7 y^{\prime}=0 \quad and y^{\prime}=\frac{3 y-2 x}{7-3 x}. At (2,1), y^{\prime}=\frac{3-4}{7-6}=-1.

    (b) y=\frac{5-x^{2}}{7-3 x} so y^{\prime}=\frac{(7-3 x)(-2 x)-\left(5-x^{2}\right)(-3)}{(7-3 x)^{2}}. At (2,1), y^{\prime}=\frac{(1)(-4)}{} At (2,1), \mathrm{y}^{\prime} = \frac{(1)(-4)-(1)(-3)}{(1)^{2}}=-1.


5. (a) \frac{x^{2}}{9}+\frac{y^{2}}{16}=1 so \frac{2 x}{9}+\frac{2 y}{16} \mathbf{y}^{\prime}=0 and \mathbf{y}^{\prime}=-\frac{16}{9} \frac{x}{y}. At (0,4), y^{\prime}=0.

    (b) \mathrm{y}=4 \sqrt{1-\frac{\mathrm{x}^{2}}{9}}=\frac{4}{3} \sqrt{9-\mathrm{x}^{2}} so \mathrm{y}^{\prime}=\frac{4}{3} \frac{-\mathrm{x}}{\sqrt{9-\mathrm{x}^{2}}}. At (0,4), \mathrm{y}^{\prime}=0.


7. (a) \ln (\mathrm{y})+3 \mathrm{x}-7=0 so \frac{1}{\mathrm{y}} \mathbf{y}^{\prime}+3=0 and \mathbf{y}^{\prime}=-3 \mathrm{y}. At (2, \mathrm{e}), \mathrm{y}^{\prime}=-3 \mathrm{e}.

    (b) y=e^{7-3 x} so y^{\prime}=-3 e^{7-3 x}. At (2, e), y^{\prime}=-3 e^{7-6}=-3 e.


9. (a) x^{2}-y^{2}=16 so 2 x-2 y y^{\prime}=0 and y^{\prime}=x / y. At (5,-3), y^{\prime}=-5 / 3.

    (b) The point (5,-3) is on the bottom half of the circle so

     \mathrm{y}=-\sqrt{\mathrm{x}^{2}-16}. Then \mathrm{y}^{\prime}=-\frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}-16}}. At (5,-3), \mathrm{y}^{\prime}=-\frac{5}{\sqrt{25-16}}=-\frac{5}{3}.


11. x=4 y-y^{2} so, differentiating each side, 1=4 \mathbf{y}^{\prime}-2 y \mathbf{y}^{\prime} and \mathbf{y}^{\prime}=\frac{1}{4-2 y}.

      At (3,1), \mathrm{y}^{\prime}=\frac{1}{4-2(1)}=\frac{1}{2}. At (3,3), \mathrm{y}^{\prime}=\frac{1}{4-2(3)}=-\frac{1}{2}.

       At (4,2), y^{\prime}=\frac{1}{4-2(2)} is undefined (the tangent line is vertical).


13. x=y^{2}-6 y+5. Differentiating each side, 1=2 y y^{\prime}-6 y^{\prime} and y^{\prime}=\frac{1}{2 y-6}. At (5,0), \mathrm{y}^{\prime}=\frac{1}{2(0)-6}=-\frac{1}{6}. At (5,6), \mathrm{y}^{\prime}=\frac{1}{2(6)-6}=\frac{1}{6}.

       At (-4,3), \mathrm{y}^{\prime}=\frac{1}{2(3)-6} is undefined (vertical tangent line).


15. 3 y^{2} y^{\prime}-5 \mathrm{y}^{\prime}=10 x so \mathrm{y}^{\prime}=\frac{10 x}{3 y^{2}-5}. At (1,3), m=10 / 22=5 / 11.


17. \mathrm{y}^{2}+\sin (\mathrm{y})=2 \mathrm{x}-6 so 2 \mathrm{y} \mathrm{y}^{\prime}+\cos (\mathrm{y}) \mathbf{y}^{\prime}=2 and \mathbf{y}^{\prime}=\frac{2}{2 \mathrm{y}+\cos (\mathrm{y})}. At (3,0), \mathrm{m}=\frac{2}{0+1}=2.


19. \mathrm{e}^{\mathrm{y}}+\sin (\mathrm{y})=\mathrm{x}^{2}-3 so \mathrm{e}^{\mathrm{y}} \mathbf{y}^{\prime}+\cos (\mathrm{y}) \mathbf{y}^{\prime}=2 \mathrm{x} and \mathbf{y}^{\prime}=\frac{2 \mathrm{x}}{\mathrm{e}^{\mathrm{y}}+\cos (\mathrm{y})}. At (2,0), \mathrm{m}=\frac{4}{1+1}=2.


21. x^{2 / 3}+y^{2 / 3}=5 so \frac{2}{3} x^{-1 / 3}+\frac{2}{3} y^{-1 / 3} y^{\prime}=0 and y^{\prime}=-(x / y)^{-1 / 3}. At (8,1), m=-(8 / 1)^{-1 / 3}=-\frac{1}{2}


23. Using implicit differentiation, 2 \mathrm{x}+\mathrm{xy}^{\prime}+\mathrm{y}+2 \mathrm{y} \mathbf{y}^{\prime}+3-7 \mathbf{y}^{\prime}=0 so \mathbf{y}^{\prime}=\frac{-\mathbf{2} \mathbf{x}-\mathbf{y}-\mathbf{3}}{\mathbf{x}+\mathbf{2} \mathbf{y}-\mathbf{7}}.

      At (1,2), y^{\prime}=\frac{-2(1)-(2)-3}{(1)+2(2)-7}=\frac{7}{2}


25. y=A x^{2}+B x+C so y^{\prime}=2 A x+B. (explicitly)

\mathrm{x}=\mathrm{Ay}^{2}+\mathrm{By}+\mathrm{C} so (implicitly) 1=2 \mathrm{Ay} \mathbf{y}^{\prime}+\mathrm{B} \mathbf{y}^{\prime} and \mathbf{y}^{\prime}=\frac{1}{2 \mathrm{Ay}+\mathrm{B}}.


27.  A x^{2}+B x y+C y^{2}+D x+E y+F=0

      Then 2 A x+B x y^{\prime}+B y+2 C y \mathbf{y}^{\prime}+D+E y^{\prime}=0 so

      \mathrm{y}^{\prime} =\frac{\mathrm{-2 A x-B y-D}}{\mathrm{B x+2 C y+E}}.


29. From problem 23, y^{\prime}=\frac{-2 x-y-3}{x+2 y-7} \quad so y^{\prime}=0 when -2 x-y-3=0 and y=-2 x-3.

Substituting \mathrm{y} =-2 \mathrm{x}-3 into the original equation, we have

x^{2}+x(-2 x-3)+(-2 x-3)^{2}+3 x-7(-2 x-3)+4=0 so

3 x^{2}+26 x+34=0 and x=\frac{-26 \pm \sqrt{26^{2}-4(3)(34)}}{2(3)}=\frac{-26 \pm \sqrt{268}}{6} \approx-1.605 and -7.062.

If x \approx-1.605 (point A), then y=-2 x-3 \approx-2(-1.605)-3=0.21. Point A is (-1.605,0.21).

If x \approx-7.062 (point C), then y=-2 x-3 \approx-2(-7.062)-3=11.124. Point C is (-7.062,11.124).


31. From the solution to problem 29, point \mathrm{C} is (-7.062,11.124).

      At \mathrm{D}, \mathrm{y}^{\prime}=\frac{-2 \mathrm{x}-\mathrm{y}-3}{\mathrm{x}+2 \mathrm{y}-7} is undefined so \mathrm{x}+2 \mathrm{y}-7=0 and \mathrm{x}=7-2 \mathrm{y}.

Substituting x=7-2 y into the original equation, we have

      (7-2 y)^{2}+(7-2 y) y+y^{2}+3(7-2 y)-7 y+4=0 so (simplifying) 3 y^{2}-34 y+74=0. Then 

      \mathrm{y}=\frac{34 \pm \sqrt{34^{2}-4(3)(74)}}{2(3)}=\frac{34 \pm \sqrt{268}}{6} \approx 8.398 and 2.938.

If y \approx 2.938 (point D), then x=7-2 y \approx 7-2(2.938)=1.124. Point D is (1.124,2.938). Point B is (-9.79,8.395).


33. (a) y=\left(x^{2}+5\right)^{7}\left(x^{3}-1\right)^{4}

     y^{\prime}=\left(x^{2}+5\right)^{7}(4)\left(x^{3}-1\right)^{3}\left(3 x^{2}\right)+(7)\left(x^{2}+5\right)^{6}(2 x)\left(x^{3}-1\right)^{4}

     =\left(x^{2}+5\right)^{6}\left(x^{3}-1\right)^{3}(2 x)\left\{6 x^{3}+30 x+7 x^{3}-7\right\}=\left(x^{2}+5\right)^{6}\left(x^{3}-1\right)^{3}(2 x)\left\{13 x^{3}+30 x-7\right\}.

(b) \ln (y)=7 \ln \left(x^{2}+5\right)+4 \ln \left(x^{3}-1\right) \frac{y^{\prime}}{y}=\frac{14 x}{x^{2}+5}+\frac{12 x^{2}}{x^{3}-1} so

      y^{\prime}=y\left\{\frac{14 x}{x^{2}+5}+\frac{12 x^{2}}{x^{3}-1}\right\}=\left(x^{2}+5\right)^{7}\left(x^{3}-1\right)^{4}\left\{\frac{14 x}{x^{2}+5}+\frac{12 x^{2}}{x^{3}-1}\right\} and this is the same as in part (a). (Really it is).


35. (a) y=x^{5}(3 x+2)^{4} \cdot y^{\prime}=x^{5} D\left((3 x+2)^{4}\right)+(3 x+2)^{4} D\left(x^{5}\right)=x^{5} \cdot 4(3 x+2)^{3}(3)+(3 x+2)^{4} \cdot\left(5 x^{4}\right)

      (b) \ln (\mathrm{y})=5 \ln (\mathrm{x})+4 \ln (3 \mathrm{x}+2). \frac{y^{\prime}}{y}=\frac{5}{x}+\frac{12}{3 x+2} \quad so y^{\prime}=y\left\{\frac{5}{x}+\frac{12}{3 x+2}\right\}=\left\{x^{5}(3 x+2)^{4}\right\}\left\{\frac{5}{x}+\frac{12}{3 x+2}\right\} and this is the same as in part (a).


37. (a) y=e^{\sin (x)} so y^{\prime}=e^{\sin (x)} \cos (x).

      (b) \ln (y)=\sin (x) so \frac{y^{\prime}}{y}=\cos (x) and y^{\prime}=y \cos (x)=e^{\sin (x)} \cos (x).


39. (a) y=\sqrt{25-x^{2}} so y^{\prime}=\frac{-x}{\sqrt{25-x^{2}}}.

      (b) \ln (\mathrm{y})=\frac{1}{2} \ln \left(25-\mathrm{x}^{2}\right) so \frac{\mathrm{y}^{\prime}}{\mathrm{y}}=\frac{1}{2} \frac{-2 \mathrm{x}}{25-\mathrm{x}^{2}}=\frac{-\mathrm{x}}{25-\mathrm{x}^{2}}. Then \mathrm{y}^{\prime}=\mathrm{y} \frac{-\mathrm{X}}{25-\mathrm{x}^{2}}=\sqrt{25-\mathrm{x}^{2}} \frac{-\mathrm{x}}{25-\mathrm{x}^{2}}=\frac{-\mathrm{x}}{\sqrt{25-\mathrm{x}^{2}}}


41. y=x^{\cos (x)} so \ln (y)=\cos (x) \cdot \ln (x) and \frac{y^{\prime}}{y}=\cos (x) \cdot \frac{1}{x}-\ln (x) \cdot \sin (x)

      Then y^{\prime}=y\left\{\cos (x) \cdot \frac{1}{x}-\ln (x) \cdot \sin (x)\right\}=x^{\cos (x)}\left\{\cos (x) \cdot \frac{1}{x}-\ln (x) \cdot \sin (x)\right\}


43. \mathrm{y}=\mathrm{x}^{4}(\mathrm{x}-2)^{7} \sin (3 \mathrm{x}) so \ln (\mathrm{y})=4 \ln (\mathrm{x})+7 \ln (\mathrm{x}-2)+\ln (\sin (3 \mathrm{x})) and \frac{\mathrm{y}^{\prime}}{\mathrm{y}}=\frac{4}{\mathrm{x}}+\frac{7}{\mathrm{x}-2}+\frac{3 \cos (3 \mathrm{x})}{\sin (3 \mathrm{x})}.

      Then y^{\prime}=y\left\{\frac{4}{x}+\frac{7}{x-2}+\frac{3 \cos (3 x)}{\sin (3 x)}\right\}=x^{4}(x-2)^{7} \sin (3 x)\left\{\frac{4}{x}+\frac{7}{x-2}+\frac{3 \cos (3 x)}{\sin (3 x)}\right\}.


45. \ln (y)=x \cdot \ln (3+\sin (x)) so \frac{y^{\prime}}{y}=\frac{x \cos (x)}{3+\sin (x)}+\ln (3+\sin (x)). Then

      y^{\prime}=(3+\sin (x))^{x}\left\{\frac{x \cos (x)}{3+\sin (x)}+\ln (3+\sin (x))\right\}


47. \begin{array}{l|l} x & f^{\prime}(x) \\ \hline 1 & 1(1.2)=1.2 \\ 2 & 9(1.8)=16.2 \\ 3 & 64(2.1)=134.4 \end{array}


49. \begin{array}{c|l} \mathrm{x} & \mathrm{f}^{\prime}(\mathrm{x}) \\ \hline 1 & 5(-1)=-5 \\ 2 & 2(0)=0 \\ 3 & 7(2)=14 \end{array}


51. \ln (f \cdot g)=\ln (f)+\ln (g) so \frac{D(f \cdot g)}{f \cdot g}=\frac{f^{\prime}}{f}+\frac{g^{\prime}}{g}. Then D(f \cdot g)=(f \cdot g)\left\{\frac{f^{\prime}}{f}+\frac{g^{\prime}}{g}\right\}=f^{\prime} \cdot g+g ' \cdot f


53. \ln (f \cdot g \cdot h)=\ln (f)+\ln (g)+\ln (h) so \frac{D\left(f \cdot g \cdot h\right)}{f \cdot g \cdot h}=\frac{f^{\prime}}{f}+\frac{g^{\prime}}{g}+\frac{h^{\prime}}{h}


55. On your own.