Determine Where a Function is Increasing, Decreasing, or Constant

Analyzing the Toolkit Functions for Increasing or Decreasing Intervals

We will now return to our toolkit functions and discuss their graphical behavior in Figure 10, Figure 11, and Figure 12.

Function   Increasing/Decreasing Example 

 Constant Function

f(x)=c

Neither increasing nor decreasing

 

 Identity Function

f(x)=x

Increasing

 

 Quadratic Function

f(x)=x^{2}

Increasing on (0, \infty)

Decreasing on (-\infty, 0)

Minimum at x=0

 


Figure 10

 

Function   Increasing/Decreasing Example 

 Cubic Function

f(x)=x^{3}

Increasing

 

Reciprocal

f(x)=\frac{1}{x} 

Decreasing (-\infty, 0) \cup(0, \infty)

 

Reciprocal Squared

f(x)=\frac{1}{x^{2}} 

Increasing on (-\infty, 0)

Decreasing on (0, \infty) 

 


Figure 11

 

Function   Increasing/Decreasing Example 

 Cube Root

f(x)=\sqrt[3]{x}

Increasing   

Square Root

f(x)=\sqrt{x} 

Increasing on (0, \infty)   

 Absolute Value

f(x)=|x|

Increasing on (0, \infty)

Decreasing on (-\infty, 0) 

 


Figure 12