Practice Evaluating Expressions in One Variable

Site: Saylor Academy
Course: MA007: Algebra
Book: Practice Evaluating Expressions in One Variable
Printed by: Guest user
Date: Tuesday, 15 July 2025, 7:46 AM

Description

Table of contents

Practice Problems

  1. Evaluate ‍\(c-2\) when ‍\(c = 7\).

  2. Evaluate ‍\(9 - \frac{8}{S}\) when ‍\(S = 4\).

  3. Evaluate ‍\(\frac{n}{6} + 2\) when ‍\(n = 12\).

  4. Evaluate ‍\(6h\) when ‍\(h = 8\).

  5. Evaluate ‍\(6+x\) when ‍\(x = 3\).

  6. Evaluate ‍\(\frac{9}{m} + 4\) when ‍\(m = 3\).

  7. Evaluate ‍\(\frac{p}{2} -5\) when ‍\(p = 14\).


Source: Khan Academy, https://www.khanacademy.org/math/in-seventh-grade-math/algebraic-expressions/finding-value-expression/e/evaluating_expressions_1
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Answers

1. Evaluate \( c - 2 \) when \( c = 7 \)

Substitute \( c = 7 \) into the expression:

\( c - 2 = 7 - 2 \)

Compute the subtraction:

\( 7 - 2 = 5 \)

Answer: \( 5 \)


2. Evaluate \( 9 - \frac{8}{S} \) when \( S = 4 \)

Substitute \( S = 4 \):

\( 9 - \frac{8}{S} = 9 - \frac{8}{4} \)

Compute the division:

\( \frac{8}{4} = 2 \)

Subtract:

\( 9 - 2 = 7 \)

Answer: \( 7 \)


3. Evaluate \( \frac{n}{6} + 2 \) when \( n = 12 \)

Substitute \( n = 12 \):

\( \frac{n}{6} + 2 = \frac{12}{6} + 2 \)

Divide:

\( \frac{12}{6} = 2 \)

Add:

\( 2 + 2 = 4 \)

Answer: \( 4 \)


4. Evaluate \( 6h \) when \( h = 8 \)

Substitute \( h = 8 \):

\( 6h = 6 \times 8 \)

Multiply:

\( 6 \times 8 = 48 \)

Answer: \( 48 \)


5. Evaluate \( 6 + x \) when \( x = 3 \)

Substitute \( x = 3 \):

\( 6 + x = 6 + 3 \)

Add:

\( 6 + 3 = 9 \)

Answer: \( 9 \)


6. Evaluate \( \frac{9}{m} + 4 \) when \( m = 3 \)

Substitute \( m = 3 \):

\( \frac{9}{m} + 4 = \frac{9}{3} + 4 \)

Divide:

\( \frac{9}{3} = 3 \)

Add:

\( 3 + 4 = 7 \)

Answer: \( 7 \)


7. Evaluate \( \frac{p}{2} - 5 \) when \( p = 14 \)

Substitute \( p = 14 \):

\( \frac{p}{2} - 5 = \frac{14}{2} - 5 \)

Divide:

\( \frac{14}{2} = 7 \)

Subtract:

\( 7 - 5 = 2 \)

Answer: \( 2 \)