Exponential Properties Involving Quotients
Site: | Saylor Academy |
Course: | MA007: Algebra |
Book: | Exponential Properties Involving Quotients |
Printed by: | Guest user |
Date: | Tuesday, 15 July 2025, 7:42 AM |
Description

Introduction
Exponential Properties Involving Quotients
In this lesson, you will learn how to simplify quotients of numbers and variables.
Quotient of Powers Property: For all real numbers \\chi, \frac{x^n}{x^m} =\chi^{n-m}\end{align*}\).
When dividing expressions with the same base, keep the base and subtract the exponent in the denominator (bottom) from the exponent in the numerator (top). When we have problems with different bases, we apply the rule separately for each base. To simplify \(\begin{align*}\frac{x^7}{x^4}\end{align*}\), repeated multiplication can be used.
\( \dfrac{x^7}{x^4} = \dfrac{\not {x} \cdot \not {x} \cdot \not {x} \cdot \not {x} \cdot {x} \cdot {x} \cdot {x}}{\not {x}\cdot\not {x}\cdot\not {x}\cdot\not {x}} =\dfrac{{x} \cdot {x} \cdot{x}}{1}=x^3 \)
\( \dfrac{x^5y^3}{x^3y^2} = \dfrac{\not {x} \cdot \not {x} \not {x} \cdot {x} \cdot {x} \cdot {x}}{\not {x} \cdot\not {x} \cdot\not {x}} =\dfrac{\not {y} \cdot \not {y} \cdot y}{\not {y} \cdot \not {y}}=\dfrac{x \cdot x}{1}\cdot \dfrac{y}{1}=x^2y \)
\( \text{OR} \ \frac{x^5y^3}{x^3y^2}=x^{5-3} \cdot y^{3-2}=x^2y \)
Example 1: Simplify each of the following expressions using the quotient rule.
(a) \(\begin{align*}\frac{x^{10}}{x^5}\end{align*}\)
(b) \(\begin{align*}\frac{x^5 \gamma^4}{x^3 \gamma^2}\end{align*}\)
Solution:
(a) \(\begin{align*}\frac{x^{10}}{x^5}=\chi^{10-5}=\chi^5\end{align*}\)
(b) \(\begin{align*}\frac{x^5 \gamma^4}{x^3 \gamma^2}=\chi^{5-3} \cdot \gamma^{4-2}=\chi^2 \gamma^2\end{align*}\)
Power of a Quotient Property: \(\begin{align*}\left(\frac{\chi^n}{\gamma^m}\right)^p = \frac{\chi^{n \cdot p}}{\gamma^{m \cdot p}}\end{align*}\)
The power inside the parenthesis for the numerator and the denominator multiplies with the power outside the parenthesis. The situation below shows why this property is true.
\(\begin{align*}\left(\frac{x^3}{y^2}\right)^4=\left( \frac{x^3}{y^2} \right) \cdot \left( \frac{x^3}{y^2}\right) \cdot \left( \frac{x^3}{y^2} \right) \cdot \left( \frac{x^3}{y^2} \right)=\frac{(x \cdot x \cdot x) \cdot (x \cdot x \cdot x) \cdot (x \cdot x \cdot x) \cdot (x \cdot x \cdot x)}{(y \cdot y) \cdot (y \cdot y) \cdot (y \cdot y) \cdot (y \cdot y)}=\frac{x^{12}}{y^8}\end{align*}\)
Example 2: Simplify the following expression.
\(\begin{align*}\left( \frac{x^{10}}{\gamma^5} \right)^3\end{align*}\)
Solution: \(\begin{align*}\left(\frac{x^{10}}{\gamma^5}\right)^3 = \frac{\chi^{10 \cdot 3}}{\gamma^{5 \cdot 3}} = \frac{\chi^{30}}{\gamma^{15}}\end{align*}\)
Source: cK-12, https://www.ck12.org/book/basic-algebra/section/8.2/ This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 License.
Practice Set
Sample explanations for some of the practice exercises below are available by viewing the following video. Note that there is not always a match between the number of the practice exercise in the video and the number of the practice exercise listed in the following exercise set. However, the practice exercise is the same in both.
Exponent Properties Involving Quotients
Evaluate the following expressions.
- \(\begin{align*}\frac{5^6}{5^2}\end{align*}\)
- \(\begin{align*}\frac{6^7}{6^3}\end{align*}\)
Simplify the following expressions.
- \(\frac{a^{3}}{a^{2}}\)
-
\(\frac{x^{9}}{x^{5}}\)
- \(\left(\frac{3^{4}}{5^{2}}\right)^{2}\)
- \(\left(\frac{a^{3} b^{4}}{a^{2} b}\right)^{3}\)