Multiplying Monomials by Polynomials

Site: Saylor Academy
Course: MA007: Algebra
Book: Multiplying Monomials by Polynomials
Printed by: Guest user
Date: Tuesday, 15 July 2025, 7:46 AM

Description

Multiplication of Monomials by Polynomials

Just as we can add and subtract polynomials, we can also multiply them. The Distributive Property and the techniques you’ve learned for dealing with exponents will be useful here.

When multiplying polynomials, remember the exponent rules, particularly the product rule: \(\begin{align*}x^n \cdot x^m=x^{n+m}\end{align*}\).

If the expressions have coefficients and more than one variable, multiply the coefficients just as you would any number and apply the product rule to each variable separately.


Multiplying Monomials 

Multiply the following monomials.

a) \(\begin{align*}(2x^2)(5x^3)\end{align*}\)

\(\begin{align*}(2x^2)(5x^3)=(2 \cdot 5) \cdot (x^2 \cdot x^3)=10x^{2+3} = 10x^5\end{align*}\)

b) \(\begin{align*}(-3y^4)(2y^2)\end{align*}\)

\(\begin{align*}(-3y^4)(2y^2)=(-3 \cdot 2) \cdot (y^4 \cdot y^2)=-6y^{4+2}=-6y^6\end{align*}\)

c) \(\begin{align*}(3xy^5)(-6x^4y^2)\end{align*}\)

\(\begin{align*}(3xy^5)(-6x^4y^2)=-18x^{1+4}y^{5+2}=-18x^5y^7\end{align*}\)

d) \(\begin{align*}(-12a^2b^3c^4)(-3a^2b^2)\end{align*}\)

\(\begin{align*}(-12a^2b^3c^4)(-3a^2b^2)=36a^{2+2}b^{3+2}c^4 = 36a^4b^5c^4\end{align*}\)

To multiply a polynomial by a monomial, use the Distributive Property. Remember, that property says that \(\begin{align*}a(b + c) = ab + ac\end{align*}\).


Using the Distributive Property 

1. Multiply:

a) \(\begin{align*}3(x^2+3x-5)\end{align*}\)

\(\begin{align*}3(x^2+3x-5)=3(x^2)+3(3x)-3(5)=3x^2+9x-15\end{align*}\)

b) \(\begin{align*}4x(3x^2-7)\end{align*}\)

\(\begin{align*}4x(3x^2-7)=(4x)(3x^2)+(4x)(-7)=12x^3-28x\end{align*}\)

c) \(\begin{align*}-7y(4y^2-2y+1)\end{align*}\)

\(\begin{align*}-7y(4y^2-2y+1)&=(-7y)(4y^2)+(-7y)(-2y)+(-7y)(1)\\ &=-28y^3+14y^2-7y\end{align*}\)

Notice that when you use the Distributive Property, the problem becomes a matter of just multiplying monomials by monomials and adding all the separate parts together.

2. Multiply:

a) \(\begin{align*}2x^3(-3x^4+2x^3-10x^2+7x+9)\end{align*}\)

\(\begin{align*}2x^3(-3x^4+2x^3-10x^2+7x+9)&=(2x^3)(-3x^4)+(2x^3)(2x^3)+(2x^3)(-10x^2)+(2x^3)(7x)+(2x^3)(9)\\ & = -6x^7+4x^6-20x^5+14x^4+18x^3\end{align*}\)

b) \(\begin{align*}-7a^2bc^3(5a^2-3b^2-9c^2)\end{align*}\)


\(\begin{align*}-7a^2bc^3(5a^2-3b^2-9c^2) & = (-7a^2bc^3)(5a^2)+(-7a^2bc^3)(-3b^2)+(-7a^2bc^3)(-9c^2)\\ & = -35a^4bc^3 + 21a^2b^3c^3 + 63a^2bc^5\end{align*}\)


Source: cK-12, https://www.ck12.org/algebra/multiply-polynomials-by-monomials/lesson/Multiplication-of-Monomials-by-Polynomials-ALG-I/
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 License.

Example

Example 1

Multiply \(\begin{align*}-2a^2b^4(3ab^2+7a^3b-9a+3)\end{align*}\).

Multiply the monomial by each term inside the parenthesis:

\(\begin{align*}& -2a^2b^4(3ab^2+7a^3b-9a+3)\\ & = (-2a^2b^4)(3ab^2)+(-2a^2b^4)(7a^3b)+(-2a^2b^4)(-9a)+(-2a^2b^4)(3)\\ & = -6a^3b^6-14a^5b^5+18a^5b^4-6a^2b^4\end{align*}\)

Review

Multiply and simplify.

  1. \(\begin{align*}17(8x-10)\end{align*}\)

  2. \(\begin{align*}2x(4x-5)\end{align*}\)

  3. \(\begin{align*}9x^3(3x^2-2x+7)\end{align*}\)

  4. \(\begin{align*}3x(2y^2+y-5)\end{align*}\)

  5. \(\begin{align*}10q(3q^2r+5r)\end{align*}\)

  6. \(\begin{align*}-3a^2b(9a^2-4b^2)\end{align*}\)

Answers

  1. \(17(8 x-10)=134 x-170\)

  2. \(2 x(4 x-5)=8 x^{2}-10 x\)

  3. \(9 x^{3}\left(3 x^{2}-2 x+7\right)=27 x^{5}-18 x^{4}+63 x^{3}\)

  4. \(3 x\left(2 y^{2}+y-5\right)=6 x y^{2}+3 x y-15 x\)

  5. \(10 q\left(3 q^{2} r+5 r\right)=30 q^{3} r+50 q r\)

  6. \(-3 a^{2} b\left(9 a^{2}-4 b^{2}\right)=-27 a^{4} b+12 a^{2} b^{3}\)