Intrusion Detection Systems

The purpose of an intrusion detection system (IDS) is to protect the confidentiality, integrity, and availability of a system. Intrusion detection systems (IDS) are designed to detect specific issues, and are categorized as signature-based (SIDS) or anomaly-based (AIDS). IDS can be software or hardware. How do SIDS and AIDS detect malicious activity? What is the difference between the two? What are the four IDS evasion techniques discussed, and how do they evade an IDS?

Introduction

NSL-KDD

NSL-KDD is a public dataset, which has been developed from the earlier KDD cup99 dataset (Tavallaee et al., 2009). A statistical analysis performed on the cup99 dataset raised important issues that heavily influence the intrusion detection accuracy and results in a misleading evaluation of AIDS (Tavallaee et al., 2009).

The main problem in the KDD data set is the huge amount of duplicate packets. Tavallaee et al. analyzed KDD training and test sets and revealed that approximately 78% and 75% of the network packets are duplicated in both the training and testing dataset (Tavallaee et al., 2009). This huge quantity of duplicate instances in the training set would influence machine-learning methods to be biased towards normal instances and thus prevent them from learning irregular instances that are typically more damaging to the computer system. Tavallaee et al. built the NSL-KDD dataset in 2009 from the KDD Cup'99 dataset to resolve the matters stated above by eliminating duplicated records (Tavallaee et al., 2009). The NSL-KDD train dataset consists of 125,973 records and the test dataset contains 22,544 records. The size of the NSL-KDD dataset is sufficient to make it practical to use the whole NSL-KDD dataset without the necessity to sample randomly. This has produced consistent and comparable results from various research works. The NSL_KDD dataset comprises 22 training intrusion attacks and 41 attributes (i.e., features). In this dataset, 21 attributes refer to the connection itself and 19 attributes describe the nature of connections within the same host (Tavallaee et al., 2009).