Finding Antiderivatives

Read this section to see how you can (sometimes) find an antiderivative. In particular, we will discuss the change of variable technique. Change of variable, also called substitution or u-substitution (for the most commonly-used variable), is a powerful technique that you will use time and again in integration. It allows you to simplify a complicated function to show how basic rules of integration apply to the function. Work through practice problems 1-4.

Practice Answers

Practice 1: \begin{aligned}
    &\mathbf{D}\left(\tan ^{2}(x)+\mathrm{C}\right)=2 \tan ^{1}(x) \mathbf{D}(\tan (x))=2 \tan (x) \sec ^{2}(x) \\
    &\mathbf{D}\left(\sec ^{2}(x)+\mathrm{C}\right)=2 \sec ^{1}(x) \mathbf{D}(\sec (x))=2 \sec (x) \sec (x) \tan (x)=2 \tan (x) \sec ^{2}(x)
    \end{aligned}


Practice 2: We know \mathbf{D}(\tan (x))=\sec ^{2}(x), so it is reasonable to try \tan (7 x).

\mathbf{D}(\tan (7 x))=\sec ^{2}(7 x) \mathbf{D}(7 x)=7 \cdot \sec ^{2}(7 x), a result 7 times the function we want, so

divide the original "guess" by 7 and try it. \mathrm{D}\left(\frac{1}{7} \tan (7 x)\right)=\frac{1}{7} \cdot 7 \cdot \sec ^{2}(7 x)=\sec ^{2}(7 x).

 \int \sec ^{2}(7 x) \mathrm{dx}=\frac{1}{7} \tan (7 x)+\mathrm{C}


\mathbf{D}\left((3 x+8)^{1 / 2}\right)=\frac{1}{2} \cdot(3 x+8)^{-1 / 2} \mathbf{D}(3 x+8)=\frac{3}{2} \cdot(3 x+8)^{-1 / 2} so let's multiply our original "guess" by 2/3:

\mathbf{D}\left(\frac{2}{3}(3 x+8)^{1 / 2}\right)=\frac{2}{3} \frac{1}{2} \cdot(3 x+8)^{-1 / 2} \mathbf{D}(3 x+8)=\frac{2}{3} \frac{3}{2} \cdot(3 x+8)^{-1 / 2}=(3 x+8)^{-1 / 2}

\int \frac{1}{\sqrt{3 x+8}} \mathrm{dx}=\frac{2}{3}(3 x+8)^{1 / 2}+\mathrm{C}.


Practice 3:

(a) \int(7 x+5)^{3} \mathrm{dx} with u=7 x+5. Then \mathrm{du}=7 \mathrm{dx} so \mathrm{dx}=\frac{1}{7} \mathrm{du} and \int(7 x+5)^{3} \mathrm{dx}=\int \mathrm{u}^{3} \frac{1}{7} \mathrm{du}=\frac{1}{7} \cdot \frac{1}{4} \mathrm{u}^{4}+\mathrm{C}=\frac{1}{28}(7 x+5)^{4}+\mathrm{C}.

(b) \int \sin \left(x^{3}-1\right) 3 x^{2} \mathrm{dx} with u=x^{3}-1. Then  \mathrm{du}=3 x^{2} \mathrm{dx} so

\int \sin \left(x^{3}-1\right) 3 x^{2} \mathrm{dx}=\int \sin (u) \mathrm{du}=-\cos (u)+\mathrm{C}=-\cos \left(x^{3}-1\right)+\mathrm{C}.


Practice 4:

(a) \mathrm{u}=2+\sin (3 \mathrm{x}) so when \mathrm{x}=0, \mathrm{u}=2+\sin (3+0)=2. When \mathrm{x}=\pi, \mathrm{u}=2+\sin (3 \cdot \pi)=2. (This integral is now very easy to evaluate. Why?)

(b) \mathrm{u}=2+\mathrm{e}^{\mathrm{x}} so when  \mathrm{x}=0, \mathrm{u}=2+\mathrm{e}^{0}=3. When  \mathrm{x}=2, \mathrm{u}=2+\mathrm{e}^{2}.

The new integration endpoints are \mathrm{u}=3 to \mathrm{u}=2+\mathrm{e}^{2}.

(c) \mathrm{u}=\mathrm{e}^{\mathrm{x}} so when \mathrm{x}=0, \mathrm{u}=\mathrm{e}^{0}=1. When \mathrm{x}=\ln (3), \mathrm{u}=\mathrm{e}^{\ln (3)}=3.

The new integration endpoints are \mathbf{u}=1 to \mathbf{u}=3.