
This book is licensed under a Creative Commons Attribution 3.0 License

Database Systems
for Management

Third edition

James F. Courtney

David B. Paradice

Kristen L. Brewer

Julia C. Graham

Copyright © 2010 James F. Courtney and David B. Paradice

For any questions about this text, please email: drexel@uga.edu

The Global Text Project is funded by the Jacobs Foundation, Zurich, Switzerland

This book is licensed under a Creative Commons Attribution 3.0 License

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:drexel@uga.edu?subject=Database%20Systemes%20for%20Management

 5-1

CHAPTER CONTENTS

The Goals of Normalization
Modification Anomalies
Deletion Anomalies
Insertion Anomalies
Update Anomalies
The Role of Assumptions in Identifying Anomalies
Avoiding Problems Due to Dependence
Functional Dependence
Full Functional Dependence
Transitive Dependence
Multivalued Dependence
Decomposing Poor Designs
First, Second, Third, and Boyce-Codd Normal Forms
First Normal Form
Second Normal Form
Third Normal Form
Boyce-Codd Normal Form
Avoiding Problems with Multiple Values
Fourth Normal Form
Avoiding Problems with Decompositions
Fifth Normal Form
Domain-Key Normal Form
Side Effects of Normalization

CHAPTER 5
Normalized Database Design

This chapter focuses on developing robust database designs. In Chapter 3 we presented tools and
methods for designing a database system. In Chapter 4 we overviewed the major models and discussed
how to create schemas for each. In this chapter, we present relational examples that will help us distinguish
between good and bad database designs. Although, we use the relational model to illustrate concepts, the
techniques we present here are applicable regardless of the approach taken to implement a database.

THE GOALS OF NORMALIZATION

There are many possible designs for the data structures used in a database system. In the long run, some
designs prove better than others. We consider one design superior to another if (1) it makes the
relationships in the database easier to understand and simpler to maintain, (2) it is more amenable to
processing new requests for data, (3) it reflects the semantics, or meaning, of the situation being modeled,
(4) it prevents the storage of invalid information, and (5) it can be represented efficiently using available
hardware and software.

Whenever data items have been haphazardly grouped into records (or attributes into relations), one or more
of the three properties mentioned above is compromised. When data items that are logically unrelated (or
logically independent) are aggregated, users become confused. Such groupings also make maintenance
difficult because the relationships being maintained are unclear. Finally, new requests for data may require

 5-2

substantial work (1) to determine if the data item being supplied is the one desired, or (2) to create new
(possibly more logical) groupings.

When these events occur, the database system may quickly become regarded as ineffective or useless.
Experience has shown that most problems can be traced to improper, or unsound, conceptual database
designs. Such designs represent monetary losses to management; they require frequent restructuring of the
database to accommodate new demands and longer times to implement changes, and they result in
ineffective use of the organization's data asset.

Normalization is a technique that structures data in ways that help reduce or prevent problems. The
normalization process results in logically consistent record structures that are easy to understand and
simple to maintain. Various levels of normalization may be obtained. Criteria that define the levels of
normalization are called normal forms.

In this chapter we examine database designs in order to identify their weak and strong points. We present
this material as an intuitive approach to the concept of normalization. Consequently, you may find that you
have already developed a "sixth sense" for some of the material discussed in this chapter.

Rarely is a manager required to recite the criteria of the various normal forms. Nevertheless, a manager
must be familiar with the ramifications of poor database design. As the criteria for higher levels of
normalization are met, database system designers are able to say with confidence that certain problems (to
be discussed shortly) will likely not exist.

Several types of problems that may result from poor database design are presented in this chapter. Each of
several sources of these problems is examined in detail, and in each case alternative database designs are
developed.

MODIFICATION ANOMALIES

To help recognize the differences among alternative database designs, it is useful to examine how mistakes
may be inadvertently introduced into a database. Mistakes may occur during insertion, deletion, or
modification of data in the database. When the mistake is a consequence of the design of the database, a
modification anomaly is said to exist. Figures 5-1 through 5-4 will be used to illustrate modification
anomalies and the processes that resolve them.

Deletion Anomalies

Consider the relation in Figure 5-1. This table contains data about employees, the department in which they
work, the projects on which they are working, and the manager of the project. The primary key of a data
structure is underlined. The data structure in Figure 5-1 suffers from a number of problems. If Baker decides
to leave the company, and the tuple or record containing the Baker data is deleted from this database, all
data recording that Cody is the manager of the project to identify new investment possibilities is lost. The
removal of one logical entity which results in loss of information about an unrelated logical entity is called a
deletion anomaly. An anomaly (in general) is a deviation from whatever is expected. This deletion has
unexpected results: data regarding a project manager is lost when data about an employee is deleted.

Another example of a deletion anomaly can be seen in the table in Figure 5-2. This data structure contains
data regarding travel plans for members of a private travel club. This organization maintains vacationing
facilities worldwide. Notice that if W. Earp decides to cancel the vacation in London and the corresponding

Kristen Brewer� 5/18/09 1:42 PM
Deleted: never

 5-3

tuple or record is deleted, all data regarding the cost of traveling to London is lost.

A third example can be seen in the medical data shown in Figure 5-3. In this design, the admitting doctor's
office address is lost when patient data is deleted. One could argue that this data is no longer needed after
a patient's data is deleted. But a reentry of the doctor's office address is highly likely, and thus a data
structure that maintains this information is preferable.

A final example is shown in Figure 5-4. This data structure contains data on insurance agents and their
clients. As you can see, should policy owners Lucas and Hammock cancel their policies, all information
about insurance agent Jones is lost. As in the medical data example, a data structure that maintains this
data is preferable.

Insertion Anomalies

The data structures in Figures 5-1 through 5-4 have a second kind of defect. Suppose that a new project is
planned for the organization illustrated in Figure 5-1, and one wants to add data regarding the manager of
that project. Because E-Number is part of the primary key and key attributes may not be null, adding this
data is impossible until at least one person has been assigned to work on the project.

The insertion of data about one logical entity which requires the insertion of data about an unrelated logical
entity is called an insertion anomaly. In this case, inserting data about a project manager requires insertion
of an unrelated piece of data--a worker assigned to the project.

The same type of insertion anomaly can be seen in Figure 5-2. These designs require that a member of the
club be planning to vacation in a particular location in order for cost data about that location to be inserted in
the data structure. Consequently, adding cost data about travel to a new location is not possible.

In Figure 5-3, data on a new doctor's office cannot be inserted until a patient is admitted by the doctor. The
data about a doctor's office is important even when the doctor has no patients, but the current design
precludes maintaining this information. A data structure design that allows insertion of this data regardless
of the doctor's current patient load is preferable.

Figure 5-4 shows the same type of problem. An insurance agent's address cannot be inserted until the
agent has a client. As with the medical data, this restriction is unacceptable.

Update Anomalies

Refer again to Figure 5-1. Suppose that a project gets a new manager. The design in Figure 5-1 requires a
change in several tuples. The modification of the information for one logical entity which requires more than
one modification to a relation is called an update anomaly.

The same sort of problem exists in Figure 5-2. If the cost of travel to Madrid changes, the modification must
be made in more than one place. Similarly, a modification to an admitting doctor's office address (or an
employer's address) in Figure 5-3 requires changes in many occurrences. The same problem is evident with
an insurance agent's address in Figure 5-4.

In these examples, the update anomaly does not appear to be a costly design error, because very few rows
are shown in the figures. The flaw becomes very much greater if thousands of occurrences are maintained.
Imagine the impact of such a design error in a student information management system for a major

 5-4

university with 30,000 student records.

The Role of Assumptions in Identifying Anomalies

In identifying modification anomalies as we have in these examples, we rely on some unstated
assumptions. Such assumptions should be made explicit to avoid inaccurately identifying anomalies. In
Figure 5-1, for example, we assume that all employees have one, unique employee number. We also
assume that projects have unique project numbers and that each has only one manager. We do not assume
that employees have unique names, but we do assume that organizations (i.e., employers) have unique
names. These are reasonable assumptions.

Consider the data in Figure 5-2. Can we conclude from this relation that the destination data item always
determines the cost attribute? Although such a conclusion appears evident, we cannot reach this conclusion
based on the data in the relation. We must rely on an underlying assumption that the cost for travel to a
particular destination is always the same.

Such assumptions depend on the underlying policies of the organization. You should always confirm
relationships between data items by examining the underlying assumptions. Data structures are
time-invariant, but data items assume various values over time. Consequently, as a designer of a database
structure, you must consider the underlying (time-invariant) relationships to identify modification anomalies.

AVOIDING PROBLEMS DUE TO DEPENDENCE

The modification anomalies discussed above all stem from the fact that the value of one data item can be
determined from the value of a second data item, while the other data items in the data structure are
logically independent of this relationship. The name of a project in Figure 5-1, for example, can be
determined from the number of the project. The value of the project name data item "depends" on the value
of the project number data item.

We introduce here a notation using bubble charts that can be used to diagram this notion of dependence.
To indicate when attributes that compose a key have relationships with non-key attributes, we circle
attributes that compose a concatenated primary key. Figure 5-5 shows an arrow from the P-Number data
item to the Manager data item. The direction of the arrow indicates which item depends on the other. In this
case, Manager depends on P-Number. The diagram also indicates that P-Number determines Project
name.

In Figure 5-2 there is a relationship between Destination and Cost of traveling to that destination which
exists independently of who travels there. Travel to Madrid, for example, always costs $1,500, regardless of
who plans to go to Madrid. Travel to Los Angeles is always $900. This is diagrammed in Figure 5-6.

Figure 5-7 shows the dependency diagram for the medical data structures. In this diagram, some of the
arrows come from the circle denoting the primary key, indicating that the key determines the data item.
Medical Record Number and Admission Date and Admission Time taken together determine, for example,
Admitting Doctor.

Figure 5-8 shows the dependence diagram for the insurance data structures. Here the primary key is
composed of a single data item, so there is no confusion about what is determined by the components of
the primary key.

Kristen Brewer� 5/18/09 1:51 PM
Formatted: Font:Italic, No underline

Kristen Brewer� 5/18/09 1:51 PM
Formatted: Font:Italic, No underline

Kristen Brewer� 5/18/09 1:51 PM
Formatted: Font:Italic

 5-5

Problems that exist in the data structures in Figure 5-1 can be found by examining the dependency
diagrams of data items relative to the primary key. Notice that we must combine two data items (employee
number and project number) to form a key for this data structure. The project name, however, can be
completely determined if we know just the project number. The project name is not dependent on which
employee is currently assigned to the project. Whenever such a combination of conditions exists,
modification anomalies are also present. In general, a design in which the non-key attributes are dependent
on all of the key attributes, and not just any subset of them, is better.

Functional Dependence

From the previous examples, we can introduce the concept of functional dependence. Functional
dependence exists between two data items in a data structure if the value of one data item implies the
value of a second data item. We say that the first data item "determines" the second, and we frequently
refer to the first data item as a determinant.

Note that there is no requirement for unique values in this discussion. Yates, for example, appears as a
manager of two different projects in Figure 5-1. A common misconception about functional dependencies is
that the attribute being determined cannot occur more than once in the data. Actually, the important point is
that the same manager name appears for every instance of a particular project name. That the manager's
name appears more than once is irrelevant.

There is a second common misunderstanding about functional dependence. When a data item (or collection
of data items) determines another data item, the second data item does not necessarily determine the first.
In the data structures mentioned above, that Yates is a manager does not determine the name of the project
Yates manages.

Full Functional Dependence

In cases where the value of a combination of data items determines the value of another data item, we wish
to distinguish further between the times when the entire combination of values is required to make the
determination and when a subset of the combination of values is adequate. A data item is said to be fully
functionally dependent on a combination of data items if it is functionally dependent on the combination of
data items and not functionally dependent on any proper subset of the combination of data items. A proper
subset of a set is any subset of that set except the set itself and the empty set.

If we examine the design in Figure 5-5, we can see that E-Number alone determines employee Name
(because an employee has a unique employee number). Because the primary key is the combination of
E-Number and P-Number, but a subset of the primary key determines the value of employee Name,
employee Name is not fully functionally dependent on the primary key. Figure 5-6 indicates that the Cost of
travel to a Destination is dependent only on the Destination and is not influenced by who is traveling or
when the trip occurs. Hence Cost is not fully functionally dependent on the primary key. In Figure 5-7,
however, Diagnosis is determined by all of the primary key and not by any subset of the key. Therefore
Diagnosis is fully functionally dependent on the primary key.

Transitive Dependence

If the value of one data item determines the value of a second data item that is not a candidate key, and the
value of the second data item determines the value of a third data item, then a transitive dependence

Kristen Brewer� 5/18/09 1:43 PM
Formatted: Font:Italic, No underline

 5-6

exists between the data items. The dependency diagram in Figure 5-7 can be used to demonstrate
transitive dependence. Because Medical Record Number determines Employer and Employer determines
Employer's Address (each patient has one employer and each employer has only one address), a transitive
dependence exists between Medical Record Number and Employer's Address. Because of this transitive
relationship, the first data item determines the third. We note that combinations of data items may be
considered, but we'll restrict the consideration to the cases where full functional dependence holds.

Multivalued Dependence

When one value of a data item is associated with a collection of values of a second data item, a
multivalued dependence exists and we say that the first data item multidetermines the second. Functional
dependence is a special case of multivalued dependence. We examine multivalued dependencies in greater
detail below.

Decomposing Poor Designs

Now that we have developed the concept of functional dependence, we have a firm foundation on which to
build our techniques for designing good data structures.

New data structures can be derived from the ASSIGNMENT data structure shown in Figure 5-1. The result
is presented in Figure 5-9. These tables do not suffer from the problems identified earlier. New projects can
be created without the need to assign employees. Employees can be added without affecting information
about the project. Also, departmental information on employees has been separated into a separate table.

Figure 5-10 shows the dependency diagram for the revised data structures. Compared to the diagram in
Figure 5-6, these are much simpler.

Figure 5-11 shows the result of decomposing the structures in Figure 5-2. In this design it is possible to add
new destinations before anyone plans to visit them. Altering customer data without affecting data about
travel costs is also possible. There are only a small number of updates required to change the cost
associated with traveling to a specific location. Figure 5-12 contains the corresponding revised dependency
diagram, which shows clearly that the Cost data item is no longer determined by a subset of a primary key.

Figure 5-13 shows a decomposition of the medical data in Figure 5-3. Adding a new doctor's address is now
possible. Similarly, data for an employer can now be added without regard to patient data. In this design,
many patient records can "share" an employer's data record. This reduces the data redundancy in
maintaining an employer record for each patient. The dependency diagrams in Figure 5-14 reflect these
changes.

FIRST, SECOND, THIRD, AND BOYCE-CODD NORMAL FORMS

The process of eliminating anomalies results in normalization of the database design. The data structures
meet certain criteria known as normal forms. There is a sequence of normal forms, each one adding more
constraints to a data structure as we progress from the first set of criteria, called first normal form, through
the highest set, called domain-key normal form. The first four normal forms deal with functional
dependence.

 5-7

First Normal Form

A data structure is in first normal form if it can be represented as a flat file structure. Flat files contain no
repeating groups. A repeating group is a data item that can occur as a collection of values. In the case of
our travel example, for instance, each customer may have many trips. Figure 5-15a shows a typical non-flat
data structure. The data structure in this example contains data for purchase orders and items being
ordered. A purchase order can contain any number of items ordered. Hence "item ordered" is a repeating
group. Figure 5-15b shows the equivalent flat data structure.

A benefit gained by converting data structures to first normal form is that the converted structures are much
easier to process. Data structures containing repeating groups must also contain either data indicating how
many occurrences of the repeating item are contained in the structure or a special mark indicating when the
last item occurs. Flat file structures have fixed, or constant, characteristics.

Second Normal Form

If a data structure is in first normal form and all non-key data items are fully functionally dependent on the
primary key, then the structure is in second normal form. In the design in Figure 5-1 a non-key attribute
(employee Name) is determined by a subset of the primary key (E-Number), so this structure is not in
second normal form. By comparison, the redesign shown in Figure 5-9 meets the criteria for second normal
form. In the ASSIGNMENT relation of Figure 5-9, there are no non-key data items. Therefore non-key data
items cannot possibly be dependent on a subset of the primary key. Consequently, the ASSIGNMENT
relation is in at least second normal form. The other two tables have primary keys composed of a single
data item, so a non-key data item cannot be determined by a proper subset of the primary key. We can
therefore conclude that these data structures are also in (at least) second normal form.

Figure 5-12 presents the revised dependence diagrams for the travel club tables from Figure 5-11.
MEMBER-DATA and TRAVEL-COSTS contain no multiple-data item keys, so they must be in second
normal form. TRAVEL-PLANS contains no non-key data items, so it must also be in second normal form.

The dependence diagrams for the revised medical relations (Figure 5-14) and the insurance relations
(Figure 5-8) show clearly that these data structures are in second normal form. In most cases, the primary
key is a single data item, thus precluding a violation of full functional dependence. In the ADMISSION data
structure (Figure 5-14), the diagram shows that the only determinant is the entire primary key.

Third Normal Form

If a data structure is in second normal form and contains no transitive dependencies, then the structure is in
third normal form. If we return again to the medical record data structures in Figure 5-3, we now have two
reasons why these structures are not in third normal form: They are not in second normal form and we have
also identified a transitive dependence. The transitive dependence was that Medical Record Number
determined Employer and Employer determined Employer's Address.

In Figure 5-9 we know immediately that if the ASSIGNMENT data structures are in second normal form they
must also be in third normal form. The reason is that we need at least three attributes to define a transitive
dependence. Because we have only two attributes, no transitive dependence exists. We can conclude that
the ASSIGNMENT data structures are in at least third normal form.

Kristen Brewer� 5/18/09 1:57 PM
Formatted: Font:Italic

 5-8

Observe that all projects have a unique name and that each project has only one manager. Project number
determines project name and project name determines manager. However, a transitive dependency does
not exist between the data items because project name is a candidate key. Therefore, the PROJECT
relation is in third normal form.

The dependency diagram shown in Figure 5-7 for the MEDICAL-DATA data structure indicates it is not in
third normal form because a transitive dependency exists (Medical Record Number determines Employer
determines Employer's Address). This design is not even in second normal form because a subset of the
key determines some non-key attributes. To achieve third normal form, the design would require a further
decomposition of the MEDICAL-DATA data structure as shown in Figure 5-14.

Figure 5-12 does not expose any transitive dependency in the travel club data structure. Similarly, Figure
5-8 shows no transitive dependency exists in the insurance data structure.

Boyce-Codd Normal Form

The original development of the normal forms stopped at third normal form. However, since that time other
normal forms have been identified from research into dependencies when the primary key is composed of a
collection of attributes (a concatenated key). The next normal form we will discuss was identified by R. F.
Boyce and E. F. Codd, and bears their names.

If a data structure is in third normal form and all determinants are candidate keys, then the data structure is
in Boyce-Codd normal form. In the design of Figure 5-1 we can identify that project number is a
determinant (of project name and manager) but is not a candidate key because project number will not
uniquely determine a tuple. Hence we could immediately rule out the possibility that the data structure in
Figure 5-1 is in Boyce-Codd normal form. In our alternative design shown in Figure 5-10, the PROJECT
data structure is in Boyce-Codd normal form because the project name determines the manager and the
project name is a candidate key. A candidate key is an attribute or collection of attributes that uniquely
indentifies a tuple. The ASSIGNMENT data structure is in Boyce-Codd normal form because there are no
non-key data items.

The decomposition of the travel club data structure shown in Figure 5-12 shows TRAVEL-PLANS in
Boyce-Codd normal form because there are no non-key data items. Also, TRAVEL-COSTS and
MEMBER-DATA are in Boyce-Codd normal form because the only determinant in each is the primary key.

Similarly, all of the other decompositions have achieved Boyce-Codd normal form. In Figure 5-14, all
determinants are primary keys. The same is true in Figure 5-8, the diagram for the insurance data structure.

Boyce-Codd normal form is not a natural by-product of third normal form. Figure 5-16a presents a relation
(of travel data) in third normal form, which is not in Boyce-Codd normal form. A key assumption in this
example is that the airline travels to only one destination. (This is quite reasonable and frequently the case
when dealing with commuter airlines in small university towns.)

The relation in Figure 5-16a is clearly in first normal form; it is in second normal form because no subset of
the key (Customer and Destination combined) determines Carrier, and no transitive dependency exists.
However, Carrier determines Destination (hence Carrier is a determinant) and Carrier is not a candidate
key. Therefore, the relation is not in Boyce-Codd normal form.

All of the modification anomalies exist. If the tuple with Customer number 6155 is removed, the information
that Reliable Airlines travels to Austin is lost. If another Carrier should be added to the table, it cannot be

Kristen Brewer� 5/18/09 2:00 PM
Formatted: Font:Not Bold, Italic

Kristen Brewer� 5/18/09 1:59 PM
Formatted: Font:Italic

Kristen Brewer� 5/18/09 1:44 PM
Deleted: form which

 5-9

added until it has a customer. If an airline changes its name, the change must be reflected in multiple
occurrences in the table. Thus, third normal form still has modification anomalies.

The decomposition in Figure 5-16b resolves these issues. Customer 6155's data can be removed without
affecting the database. A new Carrier can be added (to OPTION) without customer data being required.
Also, an airline's name can change without requiring multiple updates to the database.

The normal forms discussed thus far are summarized in Table 9-1. A general heuristic to follow is that when
more than one relationship is represented in a data structure, there is quite likely to be some type of
modification anomaly inherent in the structure. In all of these cases, modification anomalies have been
resolved by decomposing the original table into smaller tables. When you decompose into smaller tables,
you must remember to embed the appropriate part of the primary key from the original table in the new
table. (In some cases, the entire primary key must appear in the new table.)

At first glance it may appear that transforming a database design into a higher normal form requires
duplicating data. Actually, although the number of data item types in the database may be increased, the
number of data item values stored in the database is actually reduced. Hence there is a net savings in
storage requirements for the database.

When a data structure is in Boyce-Codd normal form (or higher), it does not suffer modification anomalies
due to functional dependence. Boyce-Codd normal form is therefore a desirable database design goal.

AVOIDING PROBLEMS WITH MULTIPLE VALUES

There are also problems in data structure designs, which are not due to functional dependence. Figure 5-17
presents a relation containing employee numbers, project numbers, and computer codes. Assume that an
employee may use the computer for any project on which he or she is working, and that there is no
restriction on the number of computer accounts an employee may have. The primary key must be the
concatenated key shown in order to reflect these assumptions.

Now suppose that employee number 100 has another computer account authorized. Figure 5-18 shows the
modified database. Due to the initial assumptions, adding one tuple may lead to erroneous inferences. This
data seems to indicate that employee number 100 uses two computer accounts for project 23796 and only
one for project 34548. The problem is caused partially by the fact that the attributes Project and User-code
can assume multiple values for a given employee. More important, there is no logical dependence between
the account numbers and the projects. As before, the root of the problem is in the attempt to represent more
than one relationship in a data structure.

Figure 5-19 presents another example of the problems that can be caused by multiple values. This table
contains data about a person's music preferences and the automobiles that the person owns. Clarke enjoys
jazz and rock music and owns a sports car and a truck. Suppose that Clarke buys a van. If the data is
updated as shown in Figure 5-20, there appears to be an implication that Clarke prefers jazz music while
driving the van. Two occurrences must be added, as in Figure 5-21, to maintain a logically consistent
relationship. The lack of any logical relationship between music preference and automobile type causes
these problems.

Note also the deletion and update anomalies in this example. If Clarke sells the sports car, more than one
occurrence must be deleted to reflect this. If Clarke's music preference switches from rock to classical, more
than one occurrence must be modified to accurately represent this change.

Problems with multiple values arise when there are two or more logically independent relationships within a

Kristen Brewer� 5/18/09 1:44 PM

Kristen Brewer� 5/18/09 1:52 PM
Formatted: Font:Italic, No underline

Kristen Brewer� 5/18/09 1:52 PM
Formatted: Font:Italic, No underline

Kristen Brewer� 5/18/09 1:44 PM

Deleted: inthe

Deleted: designs which

 5-10

data structure. In the first example, Project and User-code have logically independent relationships with
Employee. An employee may work on many projects and use many computer accounts, but there is no
logical relationship between projects and computer accounts. In the second example, Music Preference and
Automobile Owned exist in logically independent relationships with Name. A person may enjoy many types
of music and own several automobiles, but there is no logical relationship between music preference and
type of automobile owned.

Fourth Normal Form

A comprehensive discussion of the normal forms beyond the Boyce-Codd normal form is beyond the scope
of this text. It is instructional, however, to present examples and general definitions for these normal forms.
These examples illustrate the potential problems in structures that are in Boyce-Codd normal form.

Fourth normal form addresses the issue of problems caused by multivalued dependence. If a data structure
is in Boyce-Codd normal form, and either (1) it contains no multivalued dependencies or (2) all its
multivalued dependencies are also functional dependencies, then the data structure is in fourth normal
form.

Many discussions of fourth normal form include definitions of multivalued dependence. Problems with
multivalued dependence arise only when there are three or more logically independent data items within a
data structure. In our example (Figure 5-18), Project and User-code are logically independent. Employee
multidetermines Project and multidetermines User-code, but there is no dependence between Project and
User-code. Note that the existence of a multivalued dependence does not imply the existence of a problem.
Consider, for example, Figure 5-22, which shows a table containing the attributes Employee, Skill, and
Music Type. In this case we assume that there is a relationship between skill and music type. The employee
Borst, for example, is a trained critic of classical music and has composed classical, jazz, and rock music.
The multiple values do not cause a problem because there is a relationship between skill and music type.
Only when the multiple values are independent is there a problem.

AVOIDING PROBLEMS WITH DECOMPOSITIONS

There are problems in relations that have nothing to do with either dependence among attributes or multiple
values. Consider the information embodied by the relation in Figure 5-23. At first glance it may seem that a
reasonable alternative design could be as shown in Figure 5-24. But notice the result of combining the two
data structures in Figure 5-25 (perhaps by joining the relations) where EMPLOYEE Manager equals
MANAGER Name. New data has been introduced. The combination of values "Adams, Yates, 23438" and
the combination "Clarke, Yates, 26197" do not exist in the original data of Figure 5-24. In the relational
model, projections that produce spurious information on joining are called loss projections. We refer to the
general case as loss decompositions. Database designs should strive for non-loss decompositions --
decompositions that do not produce incorrect information when recombined.

A non-loss decomposition for this data structure is shown in Figure 5-26. Note that these data structures
reconstruct the original data relationships.

Fifth Normal Form

Fifth normal form addresses the issue of loss and non-loss decompositions. In the relational model, this is
yet another type of dependence: join dependence. A join dependence is a constraint that requires a
relation to be the join of its projections. We refer to the general case as a decomposition dependence.

A relation is in fifth normal form if the data relationships embodied in the data structure cannot be

Kristen Brewer� 5/18/09 1:44 PM
Formatted: Font:Italic, No underline

 5-11

reconstructed from data structures containing fewer data items. If the data structure can be decomposed
only into smaller records that all have the same key, then the data structure is in fifth normal form (Kent,
1983). A data structure in fifth normal form also satisfies all lower normal forms.

A constraint is simply a rule or condition that tuples of a relation must satisfy. Constraints include referential
and entity integrity, domain constraints, and functional dependencies.

DOMAIN-KEY NORMAL FORM

The final normal form we discuss is domain-key normal form, also called sixth normal form. Domain-key
normal form was defined in 1981 by R. Fagin. Fagin stated that a relation "is in domain-key normal form if
every constraint can be inferred by simply knowing the set of attribute names and their underlying domains,
along with the set of keys."

An explanation of domain-key normal form requires definition of two more types of dependence. A key
dependence implies no changes to the relation that would result in the key no longer being a unique
identifier of tuples in the relation are allowed. Figure 5-27a shows an occurrence of a relation with the key
dependence (or constraint) explicitly stated.

The second dependence is domain dependence. In domain dependence the values for an attribute must
come from a specific domain. In Figure 5-27a the domain dependencies for the Actual Cost attribute and the
Expected Cost attribute are also stated explicitly.

The tuple "New billing system, 23760, Baker, 1000, 10000" in Figure 5-27b would violate domain-key
normal form if added to the PROJECT relation, because P-Number would no longer be a key. The tuple
"New ad campaign, 34004, Kanter, 0, -1000" in Figure 5-27c would violate domain-key normal form if it were
added to the PROJECT relation, because -1000 is not a valid value for Expected Cost (costs should be
positive). We also note that any tuple deletion that would result in either a key or domain dependence being
violated also violates domain-key normal form.

As you can see, the definition of domain-key normal form is unlike that of the prior normal form definitions in
that it says nothing about traditional dependencies (functional, multivalued, and join) but deals instead with
the basic concepts of domains, keys, and constraints. Fagin showed that, after modification of the traditional
normal forms to consider the consequences of domain sizes, the traditional normal forms are all implied by
domain-key normal form. In other words, if you pick the right key and define domains properly, the system
will most likely be appropriate.

Domain-key normal form has practical as well as theoretical implications. From a practical viewpoint, it is
much easier for database software to deal with domains and keys than to deal with functional, transitive, or
multivalued dependencies. Hence future database systems may be able to incorporate checks for normal
form consistency based on the domain-key approach to normalization. This could ease the burden of the
design phase that is so critical to effective database system use.

SIDE EFFECTS OF NORMALIZATION

By now you may have decided that normalization is without fault. For the most part, we encourage this view.
But as is frequently the case, the solution to one set of problems introduces new problems.

Relationship Constraints We noted above that the decomposition of data structures into smaller structures
of higher normal form results in a duplication of data item types. Every time a data structure is decomposed
for the sake of normalization, the determinant data item (or items) ends up in two structures, acting as the

 5-12

primary key in one of them. We saw this in the decomposition of the TRAVEL-CLUB data structure in Figure
5-2 into the TRAVEL-PLANS and TRAVEL-COSTS data structures in Figure 5-12. The determinant data
item Destination became the key in the TRAVEL-COSTS relation.

The Destination attribute in TRAVEL-PLANS is now a foreign key. If referential integrity is maintained in a
database after normalization, then all values of foreign keys must either be null or exist as values of the
corresponding primary key. As explained earlier, the decomposition process requires that an appropriate
part of the primary key in the original relation (perhaps all of it) be included in the new relations that are
formed. Therefore, as primary keys occur in more places, more opportunities exist for referential integrity to
be compromised. Consequently, the decomposition process inherently yields a set of referential integrity
constraints involving the data structures created in the decomposition.

The overhead necessary to maintain these constraints must be balanced against the ease with which users
can interact with the database system. As in many cases, this balance is a design decision, which must be
made by the information analyst.

Retrieval Inefficiency The increase in data structures inherent in the normalization process can also
adversely affect the retrieval efficiency of the database system, especially in a microcomputer-based
system. Consequently, a database system designer who knows that the database system will reside on a
microcomputer may choose to keep the data structures in less than Boyce-Codd normal form.

In such a case, the data structures are frequently indexed on several keys, allowing access to the data in
the structure in many ways. Fortunately, many microcomputer database systems provide a
programming-like language that can be used to protect against the modification anomalies inherent in the
lower normal forms.

THE USER'S VIEW

Issues of normalization and consistency are important concerns for database system designers, and the
design decisions made in these areas directly affect database system users. The database is a model of the
organization, and as such must change to reflect the changes in the organization. When a database
changes, however, preservation of all existing relevant relationships is necessary. This need may be at odds
with proposed changes to the relationships modeled in the database, as when rearrangement of the data
item groupings in the database becomes necessary. When normalization is a goal of database design from
the start, the likelihood of changes being required that will have a detrimental effect on existing applications
programs is reduced.

One of the most challenging tasks in database system development is to determine an efficient
implementation of the database. Conversion to a normalized database results in minimizing the amount of
data stored in most (but not all) cases. One might not expect this, since normalization requires decomposing
tables. But whereas some duplication of data types may be incurred, there is usually a reduction in the
number of occurrences of the data type, which must be stored. Hence there is a net reduction in the total
storage required.

The largest advantage to the user is that normalized databases are easier to maintain, due largely to the
fact that data relationships in a normalized database are much more clearly and simply represented. This
means that new applications will be easier to implement, which the user will see in terms of faster response
to requests for changes. On the other hand, users might find a normalized database is difficult to
comprehend. The easiest database for users to understand would consist of a single, universal relation that

Kristen Brewer� 5/18/09 1:45 PM

Kristen Brewer� 5/18/09 1:52 PM
Formatted: Font:Italic, No underline

Kristen Brewer� 5/18/09 1:45 PM

Deleted: decision which

Deleted: type which

 5-13

contained everything. No joins would be required and only one table name is needed! Also, as discussed
above, normalization can impact retrieval performance.

Metropolitan National Bank

You now have some basis for evaluating the preliminary implementation designs that you developed earlier.
 For each relation in your relational implementation, identify all functional dependencies and determine the
normal form for the relation. Redesign as necessary to achieve Boyce Codd normal form. If you must
redesign, be sure to revise your Entity-Relationship model if necessary to reflect any changes in
relationships. In revising your original implementation designs, be careful about the degree to which you
allow the normalization process to direct your redesign efforts. You must carefully weigh the trade-offs
between resolving anomalies and maintaining a design that supports the priorities outlined in earlier
chapters.

Discuss the design decisions you make in a report that accompanies the final design. Compare your
normalized design to the performance criteria developed in earlier chapters. Does your normalized design
still provide the response times required to adequately support the MetNat decision-making environment?
State explicitly how your implementation succeeds or fails in this regard. If you feel that a problem exists,
could utility programs be developed to mitigate this problem? State explicitly what these utility programs will
provide and when they should be executed. If you feel that the design cannot be adequately adjusted using
utility programs, state why you feel the problem cannot be resolved.

CHAPTER SUMMARY

Modification anomalies are the result of poor database design. These anomalies include deletion anomalies,
insertion anomalies, and update anomalies. Deletion anomalies occur when the deletion of a data item in a
data structure results in loss of unrelated information from the database. Insertion anomalies occur when
one data item cannot be added to a data structure without the addition of an unrelated data item. Update
anomalies occur when many updates to a database must occur in order for a single data item to be
updated.

The most common source of these problems is dependence among attributes. Modification anomalies are
likely to occur when more than one relationship is modeled in a relation. A second source of modification
anomalies exists when logically independent attributes occur in a relation and these attributes are allowed to
assume multiple values. Both sources of modification anomalies can be avoided by decomposing the data
structure into smaller, more logically consistent, data structures.

In some rare cases in a relational database implementation, improper use of projection may be a third
potential source of problems. These problems occur when the join of the projections results in a relation that
contains data not in the original relation. Non-loss projections do not have this property. Projection must be
used carefully to correct modification anomalies in a relational database design.

Normalization is a process that removes anomalies from data structures. Criteria that define the many levels
of normalization are known as normal forms. Each normal form builds on the criteria of the prior forms to
construct more stable data structures. Although the normalization process produces more instances of an
attribute type, it actually results in a reduction in storage requirements because fewer actual data values
must be stored in the database. Unfortunately, the introduction of normalized data structures increases the
need for concern regarding referential integrity between data structures. Also, in microcomputer-based
systems, normalization may have to be compromised to increase retrieval efficiency.

Kristen Brewer� 5/18/09 1:52 PM
Formatted: Font:Italic, No underline

 5-14

QUESTIONS AND EXERCISES

1. What is a deletion anomaly? an insertion anomaly? an update anomaly? Why are modification anomalies
avoided?

2. Which type of modification anomaly is worse? Why?

3. When might a database designer decide that modification anomalies should not be resolved? What
additional burden does this place on users of the database? What additional processing may be required of
applications programs that use the database?

4. What is the meaning of "dependence" as used in this chapter?

5. Can a relation with only two attributes ever have problems due to dependence?

6. Can a relation with only two attributes ever have problems due to multiple values?

7. Consider your answers to Questions 5 and 6. Should relational database designers strive to make all
relations binary?

8. Give an example of a relation with problems due to multiple values.

9. Show non-loss projections of the relation in Figure 5-16.

10. Join the projections in your answer to Question 9 to demonstrate that your answer is correct.

NOTE: Many of the following exercises appeared in Chapter 3. In that chapter, the problems called for E-R
models and data structure diagrams. Your solutions to those earlier exercises will assist you here. If you
did not create E-R models or data structure diagrams, you should do so now.

11. Consider an INVESTMENT database that contains data items for Investor's name, Amount invested,
Stock, Broker's name, Broker's office address, and Broker's telephone. The following assumptions may be
made: investors may invest in many stocks; a broker has only one office; and each broker's office has only
one telephone number. Design data structures in Boyce-Codd normal form modeling these data
relationships.

12. Consider a database of TRANSFER-STUDENT data intended to maintain data about students
transferring into a university. The database contains the following data items: Student's name, Student's
address, Student's telephone number, Prior university attended, GPA at the prior university, Hours earned
at the prior university, Last date at the prior university, Student's sex, Student's date of birth, Guardian's
name, Guardian's address, and Relationship of guardian to the student. The following assumptions may be
made: students have one address and one telephone number; guardians have one address and one
telephone number; and a student may have attended more than one prior university. Design data structures
in Boyce-Codd normal form modeling these data relationships.

13. A database for a local garage is needed. The database contains data items for Customer's name,
Customer's address, Customer's work telephone, Customer's home telephone, Date of work done,
Automobile make, Automobile model, Description of work done, Parts needed to complete work, Charge for
parts needed, Charge for labor performed, and Total charge. For warranty reasons, data must be

Kristen Brewer� 5/18/09 1:46 PM

Kristen Brewer� 5/18/09 1:46 PM

Kristen Brewer� 5/18/09 1:47 PM

Deleted: which model

Deleted: which

Deleted: model

 5-15

maintained in the database for at least ninety days; therefore a customer may have several records in the
database at any time. Identical parts have only one cost, but different parts have different costs (e.g., all
tires cost the same and all engines cost the same, but a tire and an engine do not cost the same). Design
data structures in Boyce-Codd normal form modeling these data relationships.

14. A small database for a restaurant is needed. The database should contain data for Customer's name,
Reservation date, Reservation time, Seating preference (booth or table), Area preference (indoor or
outdoor), Number of people dining, and Telephone number where the customer can be reached if needed
prior to arrival. Assume that a customer makes only one reservation per date, but do not assume that the
customer's name can alone act as a primary key. Design data structures in Boyce-Codd normal form
modeling these data relationships. Be prepared to discuss any additional assumptions you make.

15. A cable television company desires a database containing data on its customers. The following data
items are needed: Customer name, Customer address, Customer telephone number, Account number,
Service provided (basic, movie channel A, movie channel B, movie channel C, and/or children's channel),
the Charge for each service, Equipment used by the customer that belongs to the cable television company
(decoder, remote control, etc.), an Identifying number for each piece of equipment, and the Extra charge (if
any) for any equipment used by the customer. Assume that a customer may have more than one account
number (some customers have rental properties and use the cable service to make their properties more
attractive). Design data structures in Boyce-Codd normal form modeling these data relationships.

16. Consider the following relations and functional dependencies. Assume in part (a) that the key for R1 is
AC, the key for R2 is A, and the key for R3 is AC. In part (b), assume that the key for R1 is S and the key for
R2 is SU. What normal form are the relations currently in? Convert all relations to Boyce-Codd normal form.

a.
R1 (A,B,C,D)
R2 (A,B,E)
R3 (A,C,D,F)
A -> B
AC -> D
A -> E
B -> CD
D -> F

b.
R1 (S,T,U,V,W)
R2 (S,U,Y)
S -> TU
S -> V
S -> W
SU -> Y
TU -> W
U -> W
U -> S

17. Suppose you have a data structure for a dance studio. The fields in the data structure are dancer
identification number, dancer name, dancer address, dancer telephone number, class identification number,
day that the class meets, and time that the class meets. Assume that each student takes one class, and
each class meets only once a week. Assume also that dancer identification number is the key. What normal
form is the data structure currently? Decompose this data structure into at least Boyce-Codd normal form.

Kristen Brewer� 5/18/09 1:46 PM

Kristen Brewer� 5/18/09 1:47 PM

Kristen Brewer� 5/18/09 1:47 PM

Deleted: which model

Deleted: which

Deleted: which

 5-16

18. Consider a database used to support a soccer referees association. Suppose the association schedules
referees for games in three youth leagues in the county, for any high school game in the county, and for any
college game played at a university in the county. Currently, the database consists of only one data
structure that contains the following information: game number (unique), date of game, time of game,
location of game, referee assigned to game, telephone number of referee (in case the game is cancelled),
home team, visiting team, league in which the teams compete, and telephone number of the league office.
Data for games for several weeks in advance is maintained in the database. In the case of youth games, a
referee may be assigned to more than one game per day. Draw a dependency diagram of this data and
decompose the data into data structures in at least Boyce-Codd normal form.

19. Suppose you have been asked to design a database for a company that manages magazine
subscriptions. This company mails thousands of advertisements each year to households throughout the
country offering hundreds of magazine subscriptions at discount subscription rates. The company also has
a sweepstakes each year in which many prizes are awarded to lucky respondents. Design a database that
will maintain the following data: subscriber's name and address, magazines subscribed, expiration dates of
subscriptions, prizes awarded to subscriber (if any), date of last advertisement sent to subscriber, addresses
of all locations that have received an advertisement regardless of response, and magazines offered and
terms of subscription for each magazine.

FOR FURTHER READING

Normalization as discussed by the originator of the relational approach is described in:
Codd, E. F. "Further Normalization of the Relational Database Model." In Data Base Systems, Courant
Computer Science Symposia 6, Prentice-Hall, Englewood Cliffs, New Jersey, 1972, pp. 65-98.
For a very readable (and applied) discussion of the normal forms criteria, see
Kent, William. "A Simple Guide to Five Normal Forms in Relational Database Theory," Communications of
the ACM, Vol. 26, No. 2, February 1983, pp. 120-125.
Domain-key normal form was first defined in the following work by Fagin:
Fagin, R. "A Normal Form for Relational Databases That Is Based on Domains and Keys," ACM
Transactions on Database Systems, Vol. 6, No. 3, September 1981.

FIGURE 9-1
Business Relation

FIGURE 5-2
Travel Club Relation

FIGURE 5-3
Medical Relation

FIGURE 5-3 (continued)

FIGURE 5-4
Insurance Relation

FIGURE 5-5
Dependency Diagram for Figure 5-1

FIGURE 5-6
Dependency Diagram for Figure 5-2

 5-17

FIGURE 5-7
Dependency Diagram for Figure 5-3

FIGURE 5-8
Dependency Diagram for Figure 5-4

FIGURE 5-9
Normalized Relations for the Data in Figure 5-1

FIGURE 5-10
Revised Dependency Diagrams for the Data Structure in Figure 5-9

Figure 5-11
Normalized Relations for the Data in Figure 5-2

FIGURE 5-12
Revised Dependency Diagrams for the Data Structure in Figure 5-11

FIGURE 5-13
Normalized Relations for Figure 5-3

FIGURE 5-13 (continued)

FIGURE 5-14
Revised Dependence Diagrams for the Data Structure in Figure 5-13

FIGURE 5-15
File Structures. (a) Non-flat file structures have repeating groups; (b) converting the non-flat file in (a) to a
flat file eliminates repeating data items.

FIGURE 5-16
Third Normal Form and Boyce-Codd Normal Form. (a) A relation in third normal form but not in Boyce-Codd
normal form; (b) a Boyce-Codd normalization of (a).

FIGURE 5-17
Relation Containing Multiple Values

FIGURE 5-18
A Tuple Has Been Added to the Data. Does employee 100 really use two computer accounts for project
23796 and only one account for project 34548?

FIGURE 5-19
Relation Containing Multiple Values

FIGURE 5-20
An Additional Tuple Demonstrates a Problem Caused by Multiple, Independent Values. Does Clarke really
enjoy only jazz music only while in the van?

FIGURE 5-21
The Relation for Figure 5-20. A second tuple is needed to maintain logical consistency.

Kristen Brewer� 5/18/09 1:48 PM
Deleted: FIgure

 5-18

FIGURE 5-22
The Multiple Values in This Data Are Related, So There Are No Anomalies

FIGURE 5-23
A Typical Relation Used in Project Management

FIGURE 5-24
An Apparently Harmless Decomposition of the Relation in Figure 5-23

FIGURE 5-25
The Result of Joining the Relations in Figure 5-24. Note that tuples that did not exist in the original relation
have been created.

FIGURE 5-26
A Set of Non-loss Projections of the Data in Figure 5-23

FIGURE 5-27
Domain-Key Normal Form. (a) Relation that currently satisfies domain-key normal form; (b) violation of
domain-key normal form key dependence; (c) violation of domain-key normal form domain dependence.

	

