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CHAPTER 5 
Normalized Database Design 
 
 
This chapter focuses on developing robust database designs.  In Chapter 3 we presented tools and 
methods for designing a database system. In Chapter 4 we overviewed the major models and discussed 
how to create schemas for each.  In this chapter, we present relational examples that will help us distinguish 
between good and bad database designs. Although, we use the relational model to illustrate concepts, the 
techniques we present here are applicable regardless of the approach taken to implement a database. 
 
 
THE GOALS OF NORMALIZATION 
 
There are many possible designs for the data structures used in a database system. In the long run, some 
designs prove better than others. We consider one design superior to another if (1) it makes the 
relationships in the database easier to understand and simpler to maintain, (2) it is more amenable to 
processing new requests for data, (3) it reflects the semantics, or meaning, of the situation being modeled, 
(4) it prevents the storage of invalid information, and (5) it can be represented efficiently using available 
hardware and software. 
 
 
Whenever data items have been haphazardly grouped into records (or attributes into relations), one or more 
of the three properties mentioned above is compromised. When data items that are logically unrelated (or 
logically independent) are aggregated, users become confused. Such groupings also make maintenance 
difficult because the relationships being maintained are unclear. Finally, new requests for data may require 
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substantial work (1) to determine if the data item being supplied is the one desired, or (2) to create new 
(possibly more logical) groupings. 
 
When these events occur, the database system may quickly become regarded as ineffective or useless. 
Experience has shown that most problems can be traced to improper, or unsound, conceptual database 
designs. Such designs represent monetary losses to management; they require frequent restructuring of the 
database to accommodate new demands and longer times to implement changes, and they result in 
ineffective use of the organization's data asset. 
 
Normalization is a technique that structures data in ways that help reduce or prevent problems. The 
normalization process results in logically consistent record structures that are easy to understand and 
simple to maintain. Various levels of normalization may be obtained. Criteria that define the levels of 
normalization are called normal forms. 
 
In this chapter we examine database designs in order to identify their weak and strong points. We present 
this material as an intuitive approach to the concept of normalization. Consequently, you may find that you 
have already developed a "sixth sense" for some of the material discussed in this chapter. 
 
Rarely is a manager required to recite the criteria of the various normal forms. Nevertheless, a manager 
must be familiar with the ramifications of poor database design. As the criteria for higher levels of 
normalization are met, database system designers are able to say with confidence that certain problems (to 
be discussed shortly) will likely not exist. 
 
Several types of problems that may result from poor database design are presented in this chapter. Each of 
several sources of these problems is examined in detail, and in each case alternative database designs are 
developed. 
 
 
MODIFICATION ANOMALIES 
 
To help recognize the differences among alternative database designs, it is useful to examine how mistakes 
may be inadvertently introduced into a database. Mistakes may occur during insertion, deletion, or 
modification of data in the database. When the mistake is a consequence of the design of the database, a 
modification anomaly is said to exist. Figures 5-1 through 5-4 will be used to illustrate modification 
anomalies and the processes that resolve them. 
 
 
Deletion Anomalies 
 
Consider the relation in Figure 5-1. This table contains data about employees, the department in which they 
work, the projects on which they are working, and the manager of the project. The primary key of a data 
structure is underlined. The data structure in Figure 5-1 suffers from a number of problems. If Baker decides 
to leave the company, and the tuple or record containing the Baker data is deleted from this database, all 
data recording that Cody is the manager of the project to identify new investment possibilities is lost. The 
removal of one logical entity which results in loss of information about an unrelated logical entity is called a 
deletion anomaly. An anomaly (in general) is a deviation from whatever is expected. This deletion has 
unexpected results: data regarding a project manager is lost when data about an employee is deleted. 
 
Another example of a deletion anomaly can be seen in the table in Figure 5-2. This data structure contains 
data regarding travel plans for members of a private travel club. This organization maintains vacationing 
facilities worldwide. Notice that if W. Earp decides to cancel the vacation in London and the corresponding 
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tuple or record is deleted, all data regarding the cost of traveling to London is lost. 
 
A third example can be seen in the medical data shown in Figure 5-3. In this design, the admitting doctor's 
office address is lost when patient data is deleted. One could argue that this data is no longer needed after 
a patient's data is deleted. But a reentry of the doctor's office address is highly likely, and thus a data 
structure that maintains this information is preferable. 
 
A final example is shown in Figure 5-4. This data structure contains data on insurance agents and their 
clients. As you can see, should policy owners Lucas and Hammock cancel their policies, all information 
about insurance agent Jones is lost. As in the medical data example, a data structure that maintains this 
data is preferable. 
 
 
Insertion Anomalies 
 
The data structures in Figures 5-1 through 5-4 have a second kind of defect. Suppose that a new project is 
planned for the organization illustrated in Figure 5-1, and one wants to add data regarding the manager of 
that project. Because E-Number is part of the primary key and key attributes may not be null, adding this 
data is impossible until at least one person has been assigned to work on the project.  
 
The insertion of data about one logical entity which requires the insertion of data about an unrelated logical 
entity is called an insertion anomaly. In this case, inserting data about a project manager requires insertion 
of an unrelated piece of data--a worker assigned to the project. 
 
The same type of insertion anomaly can be seen in Figure 5-2. These designs require that a member of the 
club be planning to vacation in a particular location in order for cost data about that location to be inserted in 
the data structure. Consequently, adding cost data about travel to a new location is not possible. 
 
In Figure 5-3, data on a new doctor's office cannot be inserted until a patient is admitted by the doctor. The 
data about a doctor's office is important even when the doctor has no patients, but the current design 
precludes maintaining this information.  A data structure design that allows insertion of this data regardless 
of the doctor's current patient load is preferable. 
 
Figure 5-4 shows the same type of problem. An insurance agent's address cannot be inserted until the 
agent has a client. As with the medical data, this restriction is unacceptable. 
 
 
Update Anomalies 
 
Refer again to Figure 5-1. Suppose that a project gets a new manager. The design in Figure 5-1 requires a 
change in several tuples. The modification of the information for one logical entity which requires more than 
one modification to a relation is called an update anomaly. 
 
The same sort of problem exists in Figure 5-2. If the cost of travel to Madrid changes, the modification must 
be made in more than one place. Similarly, a modification to an admitting doctor's office address (or an 
employer's address) in Figure 5-3 requires changes in many occurrences. The same problem is evident with 
an insurance agent's address in Figure 5-4. 
 
In these examples, the update anomaly does not appear to be a costly design error, because very few rows 
are shown in the figures. The flaw becomes very much greater if thousands of occurrences are maintained. 
Imagine the impact of such a design error in a student information management system for a major 
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university with 30,000 student records. 
 
 
The Role of Assumptions in Identifying Anomalies 
 
In identifying modification anomalies as we have in these examples, we rely on some unstated 
assumptions. Such assumptions should be made explicit to avoid inaccurately identifying anomalies. In 
Figure 5-1, for example, we assume that all employees have one, unique employee number. We also 
assume that projects have unique project numbers and that each has only one manager. We do not assume 
that employees have unique names, but we do assume that organizations (i.e., employers) have unique 
names. These are reasonable assumptions. 
 
Consider the data in Figure 5-2. Can we conclude from this relation that the destination data item always 
determines the cost attribute? Although such a conclusion appears evident, we cannot reach this conclusion 
based on the data in the relation. We must rely on an underlying assumption that the cost for travel to a 
particular destination is always the same. 
 
Such assumptions depend on the underlying policies of the organization. You should always confirm 
relationships between data items by examining the underlying assumptions. Data structures are 
time-invariant, but data items assume various values over time. Consequently, as a designer of a database 
structure, you must consider the underlying (time-invariant) relationships to identify modification anomalies. 
 
 
AVOIDING PROBLEMS DUE TO DEPENDENCE 
 
The modification anomalies discussed above all stem from the fact that the value of one data item can be 
determined from the value of a second data item, while the other data items in the data structure are 
logically independent of this relationship. The name of a project in Figure 5-1, for example, can be 
determined from the number of the project. The value of the project name data item "depends" on the value 
of the project number data item. 
 
We introduce here a notation using bubble charts that can be used to diagram this notion of dependence. 
To indicate when attributes that compose a key have relationships with non-key attributes, we circle 
attributes that compose a concatenated primary key. Figure 5-5 shows an arrow from the P-Number data 
item to the Manager data item. The direction of the arrow indicates which item depends on the other. In this 
case, Manager depends on P-Number. The diagram also indicates that P-Number determines Project 
name. 
 
In Figure 5-2 there is a relationship between Destination and Cost of traveling to that destination which 
exists independently of who travels there. Travel to Madrid, for example, always costs $1,500, regardless of 
who plans to go to Madrid. Travel to Los Angeles is always $900. This is diagrammed in Figure 5-6. 
 
Figure 5-7 shows the dependency diagram for the medical data structures. In this diagram, some of the 
arrows come from the circle denoting the primary key, indicating that the key determines the data item. 
Medical Record Number and Admission Date and Admission Time taken together determine, for example, 
Admitting Doctor. 
 
Figure 5-8 shows the dependence diagram for the insurance data structures. Here the primary key is 
composed of a single data item, so there is no confusion about what is determined by the components of 
the primary key. 
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Problems that exist in the data structures in Figure 5-1 can be found by examining the dependency 
diagrams of data items relative to the primary key. Notice that we must combine two data items (employee 
number and project number) to form a key for this data structure. The project name, however, can be 
completely determined if we know just the project number. The project name is not dependent on which 
employee is currently assigned to the project. Whenever such a combination of conditions exists, 
modification anomalies are also present. In general, a design in which the non-key attributes are dependent 
on all of the key attributes, and not just any subset of them, is better. 
 
 
Functional Dependence 
 
From the previous examples, we can introduce the concept of functional dependence. Functional 
dependence exists between two data items in a data structure if the value of one data item implies the 
value of a second data item. We say that the first data item "determines" the second, and we frequently 
refer to the first data item as a determinant. 
 
Note that there is no requirement for unique values in this discussion. Yates, for example, appears as a 
manager of two different projects in Figure 5-1. A common misconception about functional dependencies is 
that the attribute being determined cannot occur more than once in the data. Actually, the important point is 
that the same manager name appears for every instance of a particular project name. That the manager's 
name appears more than once is irrelevant. 
 
There is a second common misunderstanding about functional dependence. When a data item (or collection 
of data items) determines another data item, the second data item does not necessarily determine the first. 
In the data structures mentioned above, that Yates is a manager does not determine the name of the project 
Yates manages. 
 
 
Full Functional Dependence 
 
In cases where the value of a combination of data items determines the value of another data item, we wish 
to distinguish further between the times when the entire combination of values is required to make the 
determination and when a subset of the combination of values is adequate. A data item is said to be fully 
functionally dependent on a combination of data items if it is functionally dependent on the combination of 
data items and not functionally dependent on any proper subset of the combination of data items. A proper 
subset of a set is any subset of that set except the set itself and the empty set. 
 
If we examine the design in Figure 5-5, we can see that E-Number alone determines employee Name 
(because an employee has a unique employee number). Because the primary key is the combination of 
E-Number and P-Number, but a subset of the primary key determines the value of employee Name, 
employee Name is not fully functionally dependent on the primary key. Figure 5-6 indicates that the Cost of 
travel to a Destination is dependent only on the Destination and is not influenced by who is traveling or 
when the trip occurs. Hence Cost is not fully functionally dependent on the primary key. In Figure 5-7, 
however, Diagnosis is determined by all of the primary key and not by any subset of the key. Therefore 
Diagnosis is fully functionally dependent on the primary key. 
 
 
Transitive Dependence 
 
If the value of one data item determines the value of a second data item that is not a candidate key, and the 
value of the second data item determines the value of a third data item, then a transitive dependence 

Kristen Brewer� 5/18/09 1:43 PM
Formatted: Font:Italic, No underline



 

 
 
 5-6 

exists between the data items. The dependency diagram in Figure 5-7 can be used to demonstrate 
transitive dependence. Because Medical Record Number determines Employer and Employer determines 
Employer's Address (each patient has one employer and each employer has only one address), a transitive 
dependence exists between Medical Record Number and Employer's Address. Because of this transitive 
relationship, the first data item determines the third. We note that combinations of data items may be 
considered, but we'll restrict the consideration to the cases where full functional dependence holds. 
 
 
Multivalued Dependence 
 
When one value of a data item is associated with a collection of values of a second data item, a 
multivalued dependence exists and we say that the first data item multidetermines the second. Functional 
dependence is a special case of multivalued dependence. We examine multivalued dependencies in greater 
detail below. 
 
 
Decomposing Poor Designs 
 
 
Now that we have developed the concept of functional dependence, we have a firm foundation on which to 
build our techniques for designing good data structures. 
 
New data structures can be derived from the ASSIGNMENT data structure shown in Figure 5-1. The result 
is presented in Figure 5-9. These tables do not suffer from the problems identified earlier. New projects can 
be created without the need to assign employees. Employees can be added without affecting information 
about the project. Also, departmental information on employees has been separated into a separate table. 
 
Figure 5-10 shows the dependency diagram for the revised data structures. Compared to the diagram in 
Figure 5-6, these are much simpler. 
 
Figure 5-11 shows the result of decomposing the structures in Figure 5-2. In this design it is possible to add 
new destinations before anyone plans to visit them. Altering customer data without affecting data about 
travel costs is also possible. There are only a small number of updates required to change the cost 
associated with traveling to a specific location. Figure 5-12 contains the corresponding revised dependency 
diagram, which shows clearly that the Cost data item is no longer determined by a subset of a primary key. 
 
Figure 5-13 shows a decomposition of the medical data in Figure 5-3. Adding a new doctor's address is now 
possible. Similarly, data for an employer can now be added without regard to patient data. In this design, 
many patient records can "share" an employer's data record. This reduces the data redundancy in 
maintaining an employer record for each patient. The dependency diagrams in Figure 5-14 reflect these 
changes. 
 
 
FIRST, SECOND, THIRD, AND BOYCE-CODD NORMAL FORMS 
 
The process of eliminating anomalies results in normalization of the database design. The data structures 
meet certain criteria known as normal forms. There is a sequence of normal forms, each one adding more 
constraints to a data structure as we progress from the first set of criteria, called first normal form, through 
the highest set, called domain-key normal form. The first four normal forms deal with functional 
dependence. 
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First Normal Form 
 
A data structure is in first normal form if it can be represented as a flat file structure. Flat files contain no 
repeating groups. A repeating group is a data item that can occur as a collection of values.  In the case of 
our travel example, for instance, each customer may have many trips. Figure 5-15a shows a typical non-flat 
data structure. The data structure in this example contains data for purchase orders and items being 
ordered. A purchase order can contain any number of items ordered. Hence "item ordered" is a repeating 
group. Figure 5-15b shows the equivalent flat data structure. 
 
A benefit gained by converting data structures to first normal form is that the converted structures are much 
easier to process. Data structures containing repeating groups must also contain either data indicating how 
many occurrences of the repeating item are contained in the structure or a special mark indicating when the 
last item occurs. Flat file structures have fixed, or constant, characteristics. 
 
 
Second Normal Form 
 
If a data structure is in first normal form and all non-key data items are fully functionally dependent on the 
primary key, then the structure is in second normal form. In the design in Figure 5-1 a non-key attribute 
(employee Name) is determined by a subset of the primary key (E-Number), so this structure is not in 
second normal form. By comparison, the redesign shown in Figure 5-9 meets the criteria for second normal 
form. In the ASSIGNMENT relation of Figure 5-9, there are no non-key data items. Therefore non-key data 
items cannot possibly be dependent on a subset of the primary key. Consequently, the ASSIGNMENT 
relation is in at least second normal form. The other two tables have primary keys composed of a single 
data item, so a non-key data item cannot be determined by a proper subset of the primary key. We can 
therefore conclude that these data structures are also in (at least) second normal form. 
 
Figure 5-12 presents the revised dependence diagrams for the travel club tables from Figure 5-11. 
MEMBER-DATA and TRAVEL-COSTS contain no multiple-data item keys, so they must be in second 
normal form. TRAVEL-PLANS contains no non-key data items, so it must also be in second normal form. 
 
The dependence diagrams for the revised medical relations (Figure 5-14) and the insurance relations 
(Figure 5-8) show clearly that these data structures are in second normal form. In most cases, the primary 
key is a single data item, thus precluding a violation of full functional dependence. In the ADMISSION data 
structure (Figure 5-14), the diagram shows that the only determinant is the entire primary key. 
 
 
Third Normal Form 
 
If a data structure is in second normal form and contains no transitive dependencies, then the structure is in 
third normal form. If we return again to the medical record data structures in Figure 5-3, we now have two 
reasons why these structures are not in third normal form: They are not in second normal form and we have 
also identified a transitive dependence. The transitive dependence was that Medical Record Number 
determined Employer and Employer determined Employer's Address. 
 
In Figure 5-9 we know immediately that if the ASSIGNMENT data structures are in second normal form they 
must also be in third normal form. The reason is that we need at least three attributes to define a transitive 
dependence. Because we have only two attributes, no transitive dependence exists. We can conclude that 
the ASSIGNMENT data structures are in at least third normal form. 
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Observe that all projects have a unique name and that each project has only one manager. Project number 
determines project name and project name determines manager. However, a transitive dependency does 
not exist between the data items because project name is a candidate key. Therefore, the PROJECT 
relation is in third normal form. 
 
The dependency diagram shown in Figure 5-7 for the MEDICAL-DATA data structure indicates it is not in 
third normal form because a transitive dependency exists (Medical Record Number determines Employer 
determines Employer's Address). This design is not even in second normal form because a subset of the 
key determines some non-key attributes. To achieve third normal form, the design would require a further 
decomposition of the MEDICAL-DATA data structure as shown in Figure 5-14. 
 
Figure 5-12 does not expose any transitive dependency in the travel club data structure. Similarly, Figure 
5-8 shows no transitive dependency exists in the insurance data structure. 
 
 
Boyce-Codd Normal Form 
 
The original development of the normal forms stopped at third normal form. However, since that time other 
normal forms have been identified from research into dependencies when the primary key is composed of a 
collection of attributes (a concatenated key). The next normal form we will discuss was identified by R. F. 
Boyce and E. F. Codd, and bears their names. 
 
If a data structure is in third normal form and all determinants are candidate keys, then the data structure is 
in Boyce-Codd normal form. In the design of Figure 5-1 we can identify that project number is a 
determinant (of project name and manager) but is not a candidate key because project number will not 
uniquely determine a tuple. Hence we could immediately rule out the possibility that the data structure in 
Figure 5-1 is in Boyce-Codd normal form. In our alternative design shown in Figure 5-10, the PROJECT 
data structure is in Boyce-Codd normal form because the project name determines the manager and the 
project name is a candidate key. A candidate key is an attribute or collection of attributes that uniquely 
indentifies a tuple.  The ASSIGNMENT data structure is in Boyce-Codd normal form because there are no 
non-key data items. 
 
The decomposition of the travel club data structure shown in Figure 5-12 shows TRAVEL-PLANS in 
Boyce-Codd normal form because there are no non-key data items. Also, TRAVEL-COSTS and 
MEMBER-DATA are in Boyce-Codd normal form because the only determinant in each is the primary key. 
 
Similarly, all of the other decompositions have achieved Boyce-Codd normal form. In Figure 5-14, all 
determinants are primary keys. The same is true in Figure 5-8, the diagram for the insurance data structure. 
 
Boyce-Codd normal form is not a natural by-product of third normal form.  Figure 5-16a presents a relation 
(of travel data) in third normal form, which is not in Boyce-Codd normal form. A key assumption in this 
example is that the airline travels to only one destination. (This is quite reasonable and frequently the case 
when dealing with commuter airlines in small university towns.) 
 
The relation in Figure 5-16a is clearly in first normal form; it is in second normal form because no subset of 
the key (Customer and Destination combined) determines Carrier, and no transitive dependency exists. 
However, Carrier determines Destination (hence Carrier is a determinant) and Carrier is not a candidate 
key. Therefore, the relation is not in Boyce-Codd normal form. 
 
All of the modification anomalies exist.  If the tuple with Customer number 6155 is removed, the information 
that Reliable Airlines travels to Austin is lost.  If another Carrier should be added to the table, it cannot be 
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added until it has a customer.  If an airline changes its name, the change must be reflected in multiple 
occurrences in the table.  Thus, third normal form still has modification anomalies. 
 
The decomposition in Figure 5-16b resolves these issues.  Customer 6155's data can be removed without 
affecting the database.  A new Carrier can be added (to OPTION) without customer data being required. 
Also, an airline's name can change without requiring multiple updates to the database. 
 
The normal forms discussed thus far are summarized in Table 9-1. A general heuristic to follow is that when 
more than one relationship is represented in a data structure, there is quite likely to be some type of 
modification anomaly inherent in the structure. In all of these cases, modification anomalies have been 
resolved by decomposing the original table into smaller tables.  When you decompose into smaller tables, 
you must remember to embed the appropriate part of the primary key from the original table in the new 
table.  (In some cases, the entire primary key must appear in the new table.) 
 
At first glance it may appear that transforming a database design into a higher normal form requires 
duplicating data. Actually, although the number of data item types in the database may be increased, the 
number of data item values stored in the database is actually reduced. Hence there is a net savings in 
storage requirements for the database. 
 
When a data structure is in Boyce-Codd normal form (or higher), it does not suffer modification anomalies 
due to functional dependence. Boyce-Codd normal form is therefore a desirable database design goal. 
 
AVOIDING PROBLEMS WITH MULTIPLE VALUES 
 
There are also problems in data structure designs, which are not due to functional dependence. Figure 5-17 
presents a relation containing employee numbers, project numbers, and computer codes. Assume that an 
employee may use the computer for any project on which he or she is working, and that there is no 
restriction on the number of computer accounts an employee may have. The primary key must be the 
concatenated key shown in order to reflect these assumptions. 
 
Now suppose that employee number 100 has another computer account authorized. Figure 5-18 shows the 
modified database. Due to the initial assumptions, adding one tuple may lead to erroneous inferences. This 
data seems to indicate that employee number 100 uses two computer accounts for project 23796 and only 
one for project 34548. The problem is caused partially by the fact that the attributes Project and User-code 
can assume multiple values for a given employee. More important, there is no logical dependence between 
the account numbers and the projects. As before, the root of the problem is in the attempt to represent more 
than one relationship in a data structure. 
 
Figure 5-19 presents another example of the problems that can be caused by multiple values. This table 
contains data about a person's music preferences and the automobiles that the person owns. Clarke enjoys 
jazz and rock music and owns a sports car and a truck. Suppose that Clarke buys a van. If the data is 
updated as shown in Figure 5-20, there appears to be an implication that Clarke prefers jazz music while 
driving the van. Two occurrences must be added, as in Figure 5-21, to maintain a logically consistent 
relationship. The lack of any logical relationship between music preference and automobile type causes 
these problems. 
 
Note also the deletion and update anomalies in this example. If Clarke sells the sports car, more than one 
occurrence must be deleted to reflect this. If Clarke's music preference switches from rock to classical, more 
than one occurrence must be modified to accurately represent this change. 
 
Problems with multiple values arise when there are two or more logically independent relationships within a 
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data structure. In the first example, Project and User-code have logically independent relationships with 
Employee. An employee may work on many projects and use many computer accounts, but there is no 
logical relationship between projects and computer accounts. In the second example, Music Preference and 
Automobile Owned exist in logically independent relationships with Name. A person may enjoy many types 
of music and own several automobiles, but there is no logical relationship between music preference and 
type of automobile owned. 
 
Fourth Normal Form 
 
A comprehensive discussion of the normal forms beyond the Boyce-Codd normal form is beyond the scope 
of this text. It is instructional, however, to present examples and general definitions for these normal forms. 
These examples illustrate the potential problems in structures that are in Boyce-Codd normal form. 
 
Fourth normal form addresses the issue of problems caused by multivalued dependence. If a data structure 
is in Boyce-Codd normal form, and either (1) it contains no multivalued dependencies or (2) all its 
multivalued dependencies are also functional dependencies, then the data structure is in fourth normal 
form. 
 
Many discussions of fourth normal form include definitions of multivalued dependence. Problems with 
multivalued dependence arise only when there are three or more logically independent data items within a 
data structure. In our example (Figure 5-18), Project and User-code are logically independent. Employee 
multidetermines Project and multidetermines User-code, but there is no dependence between Project and 
User-code. Note that the existence of a multivalued dependence does not imply the existence of a problem. 
Consider, for example, Figure 5-22, which shows a table containing the attributes Employee, Skill, and 
Music Type. In this case we assume that there is a relationship between skill and music type. The employee 
Borst, for example, is a trained critic of classical music and has composed classical, jazz, and rock music. 
The multiple values do not cause a problem because there is a relationship between skill and music type.  
Only when the multiple values are independent is there a problem. 
 
AVOIDING PROBLEMS WITH DECOMPOSITIONS 
 
There are problems in relations that have nothing to do with either dependence among attributes or multiple 
values. Consider the information embodied by the relation in Figure 5-23. At first glance it may seem that a 
reasonable alternative design could be as shown in Figure 5-24. But notice the result of combining the two 
data structures in Figure 5-25 (perhaps by joining the relations) where EMPLOYEE Manager equals 
MANAGER Name. New data has been introduced. The combination of values "Adams, Yates, 23438" and 
the combination "Clarke, Yates, 26197" do not exist in the original data of Figure 5-24. In the relational 
model, projections that produce spurious information on joining are called loss projections. We refer to the 
general case as loss decompositions. Database designs should strive for non-loss decompositions -- 
decompositions that do not produce incorrect information when recombined. 
 
A non-loss decomposition for this data structure is shown in Figure 5-26. Note that these data structures 
reconstruct the original data relationships. 
 
Fifth Normal Form 
 
Fifth normal form addresses the issue of loss and non-loss decompositions. In the relational model, this is 
yet another type of dependence: join dependence. A join dependence is a constraint that requires a 
relation to be the join of its projections. We refer to the general case as a decomposition dependence. 
 
A relation is in fifth normal form if the data relationships embodied in the data structure cannot be 
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reconstructed from data structures containing fewer data items. If the data structure can be decomposed 
only into smaller records that all have the same key, then the data structure is in fifth normal form (Kent, 
1983). A data structure in fifth normal form also satisfies all lower normal forms.  
 
A constraint is simply a rule or condition that tuples of a relation must satisfy. Constraints include referential 
and entity integrity, domain constraints, and functional dependencies. 
 
DOMAIN-KEY NORMAL FORM 
 
The final normal form we discuss is domain-key normal form, also called sixth normal form. Domain-key 
normal form was defined in 1981 by R. Fagin. Fagin stated that a relation "is in domain-key normal form if 
every constraint can be inferred by simply knowing the set of attribute names and their underlying domains, 
along with the set of keys." 
 
An explanation of domain-key normal form requires definition of two more types of dependence. A key 
dependence implies no changes to the relation that would result in the key no longer being a unique 
identifier of tuples in the relation are allowed. Figure 5-27a shows an occurrence of a relation with the key 
dependence (or constraint) explicitly stated. 
 
The second dependence is domain dependence. In domain dependence the values for an attribute must 
come from a specific domain. In Figure 5-27a the domain dependencies for the Actual Cost attribute and the 
Expected Cost attribute are also stated explicitly. 
 
The tuple "New billing system, 23760, Baker, 1000, 10000" in Figure 5-27b would violate domain-key 
normal form if added to the PROJECT relation, because P-Number would no longer be a key. The tuple 
"New ad campaign, 34004, Kanter, 0, -1000" in Figure 5-27c would violate domain-key normal form if it were 
added to the PROJECT relation, because -1000 is not a valid value for Expected Cost (costs should be 
positive). We also note that any tuple deletion that would result in either a key or domain dependence being 
violated also violates domain-key normal form. 
 
As you can see, the definition of domain-key normal form is unlike that of the prior normal form definitions in 
that it says nothing about traditional dependencies (functional, multivalued, and join) but deals instead with 
the basic concepts of domains, keys, and constraints. Fagin showed that, after modification of the traditional 
normal forms to consider the consequences of domain sizes, the traditional normal forms are all implied by 
domain-key normal form.  In other words, if you pick the right key and define domains properly, the system 
will most likely be appropriate. 
 
Domain-key normal form has practical as well as theoretical implications. From a practical viewpoint, it is 
much easier for database software to deal with domains and keys than to deal with functional, transitive, or 
multivalued dependencies. Hence future database systems may be able to incorporate checks for normal 
form consistency based on the domain-key approach to normalization. This could ease the burden of the 
design phase that is so critical to effective database system use. 
 
SIDE EFFECTS OF NORMALIZATION 
 
By now you may have decided that normalization is without fault. For the most part, we encourage this view. 
But as is frequently the case, the solution to one set of problems introduces new problems. 
 
Relationship Constraints We noted above that the decomposition of data structures into smaller structures 
of higher normal form results in a duplication of data item types. Every time a data structure is decomposed 
for the sake of normalization, the determinant data item (or items) ends up in two structures, acting as the 
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primary key in one of them. We saw this in the decomposition of the TRAVEL-CLUB data structure in Figure 
5-2 into the TRAVEL-PLANS and TRAVEL-COSTS data structures in Figure 5-12. The determinant data 
item Destination became the key in the TRAVEL-COSTS relation. 
 
The Destination attribute in TRAVEL-PLANS is now a foreign key. If referential integrity is maintained in a 
database after normalization, then all values of foreign keys must either be null or exist as values of the 
corresponding primary key. As explained earlier, the decomposition process requires that an appropriate 
part of the primary key in the original relation (perhaps all of it) be included in the new relations that are 
formed.  Therefore, as primary keys occur in more places, more opportunities exist for referential integrity to 
be compromised.  Consequently, the decomposition process inherently yields a set of referential integrity 
constraints involving the data structures created in the decomposition.  
 
The overhead necessary to maintain these constraints must be balanced against the ease with which users 
can interact with the database system. As in many cases, this balance is a design decision, which must be 
made by the information analyst. 
 
 
Retrieval Inefficiency The increase in data structures inherent in the normalization process can also 
adversely affect the retrieval efficiency of the database system, especially in a microcomputer-based 
system. Consequently, a database system designer who knows that the database system will reside on a 
microcomputer may choose to keep the data structures in less than Boyce-Codd normal form. 
 
In such a case, the data structures are frequently indexed on several keys, allowing access to the data in 
the structure in many ways. Fortunately, many microcomputer database systems provide a 
programming-like language that can be used to protect against the modification anomalies inherent in the 
lower normal forms. 
 
 
THE USER'S VIEW 
 
Issues of normalization and consistency are important concerns for database system designers, and the 
design decisions made in these areas directly affect database system users. The database is a model of the 
organization, and as such must change to reflect the changes in the organization. When a database 
changes, however, preservation of all existing relevant relationships is necessary. This need may be at odds 
with proposed changes to the relationships modeled in the database, as when rearrangement of the data 
item groupings in the database becomes necessary. When normalization is a goal of database design from 
the start, the likelihood of changes being required that will have a detrimental effect on existing applications 
programs is reduced. 
 
One of the most challenging tasks in database system development is to determine an efficient 
implementation of the database. Conversion to a normalized database results in minimizing the amount of 
data stored in most (but not all) cases. One might not expect this, since normalization requires decomposing 
tables. But whereas some duplication of data types may be incurred, there is usually a reduction in the 
number of occurrences of the data type, which must be stored. Hence there is a net reduction in the total 
storage required. 
 
The largest advantage to the user is that normalized databases are easier to maintain, due largely to the 
fact that data relationships in a normalized database are much more clearly and simply represented. This 
means that new applications will be easier to implement, which the user will see in terms of faster response 
to requests for changes.  On the other hand, users might find a normalized database is difficult to 
comprehend.  The easiest database for users to understand would consist of a single, universal relation that 
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contained everything.  No joins would be required and only one table name is needed!  Also, as discussed 
above, normalization can impact retrieval performance. 
 
 
Metropolitan National Bank 
 
You now have some basis for evaluating the preliminary implementation designs that you developed earlier. 
 For each relation in your relational implementation, identify all functional dependencies and determine the 
normal form for the relation.  Redesign as necessary to achieve Boyce Codd normal form.  If you must 
redesign, be sure to revise your Entity-Relationship model if necessary to reflect any changes in 
relationships.  In revising your original implementation designs, be careful about the degree to which you 
allow the normalization process to direct your redesign efforts. You must carefully weigh the trade-offs 
between resolving anomalies and maintaining a design that supports the priorities outlined in earlier 
chapters.   
 
Discuss the design decisions you make in a report that accompanies the final design.  Compare your 
normalized design to the performance criteria developed in earlier chapters. Does your normalized design 
still provide the response times required to adequately support the MetNat decision-making environment?  
State explicitly how your implementation succeeds or fails in this regard. If you feel that a problem exists, 
could utility programs be developed to mitigate this problem?  State explicitly what these utility programs will 
provide and when they should be executed.  If you feel that the design cannot be adequately adjusted using 
utility programs, state why you feel the problem cannot be resolved. 
 
CHAPTER SUMMARY 
 
Modification anomalies are the result of poor database design. These anomalies include deletion anomalies, 
insertion anomalies, and update anomalies. Deletion anomalies occur when the deletion of a data item in a 
data structure results in loss of unrelated information from the database. Insertion anomalies occur when 
one data item cannot be added to a data structure without the addition of an unrelated data item. Update 
anomalies occur when many updates to a database must occur in order for a single data item to be 
updated. 
 
The most common source of these problems is dependence among attributes. Modification anomalies are 
likely to occur when more than one relationship is modeled in a relation. A second source of modification 
anomalies exists when logically independent attributes occur in a relation and these attributes are allowed to 
assume multiple values. Both sources of modification anomalies can be avoided by decomposing the data 
structure into smaller, more logically consistent, data structures. 
 
In some rare cases in a relational database implementation, improper use of projection may be a third 
potential source of problems. These problems occur when the join of the projections results in a relation that 
contains data not in the original relation. Non-loss projections do not have this property. Projection must be 
used carefully to correct modification anomalies in a relational database design. 
 
Normalization is a process that removes anomalies from data structures. Criteria that define the many levels 
of normalization are known as normal forms. Each normal form builds on the criteria of the prior forms to 
construct more stable data structures. Although the normalization process produces more instances of an 
attribute type, it actually results in a reduction in storage requirements because fewer actual data values 
must be stored in the database. Unfortunately, the introduction of normalized data structures increases the 
need for concern regarding referential integrity between data structures. Also, in microcomputer-based 
systems, normalization may have to be compromised to increase retrieval efficiency. 
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QUESTIONS AND EXERCISES 
 
1. What is a deletion anomaly? an insertion anomaly? an update anomaly? Why are modification anomalies 
avoided? 
 
2. Which type of modification anomaly is worse? Why? 
 
3. When might a database designer decide that modification anomalies should not be resolved? What 
additional burden does this place on users of the database? What additional processing may be required of 
applications programs that use the database? 
 
4. What is the meaning of "dependence" as used in this chapter? 
 
5. Can a relation with only two attributes ever have problems due to dependence? 
 
6. Can a relation with only two attributes ever have problems due to multiple values? 
 
7. Consider your answers to Questions 5 and 6. Should relational database designers strive to make all 
relations binary? 
 
8. Give an example of a relation with problems due to multiple values. 
 
9. Show non-loss projections of the relation in Figure 5-16. 
 
10. Join the projections in your answer to Question 9 to demonstrate that your answer is correct. 
 
 
NOTE: Many of the following exercises appeared in Chapter 3.  In that chapter, the problems called for E-R 
models and data structure diagrams.  Your solutions to those earlier exercises will assist you here.  If you 
did not create E-R models or data structure diagrams, you should do so now. 
 
 
11. Consider an INVESTMENT database that contains data items for Investor's name, Amount invested, 
Stock, Broker's name, Broker's office address, and Broker's telephone. The following assumptions may be 
made: investors may invest in many stocks; a broker has only one office; and each broker's office has only 
one telephone number. Design data structures in Boyce-Codd normal form modeling these data 
relationships. 
 
12. Consider a database of TRANSFER-STUDENT data intended to maintain data about students 
transferring into a university. The database contains the following data items: Student's name, Student's 
address, Student's telephone number, Prior university attended, GPA at the prior university, Hours earned 
at the prior university, Last date at the prior university, Student's sex, Student's date of birth, Guardian's 
name, Guardian's address, and Relationship of guardian to the student. The following assumptions may be 
made: students have one address and one telephone number; guardians have one address and one 
telephone number; and a student may have attended more than one prior university. Design data structures 
in Boyce-Codd normal form modeling these data relationships. 
 
13. A database for a local garage is needed. The database contains data items for Customer's name, 
Customer's address, Customer's work telephone, Customer's home telephone, Date of work done, 
Automobile make, Automobile model, Description of work done, Parts needed to complete work, Charge for 
parts needed, Charge for labor performed, and Total charge. For warranty reasons, data must be 
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maintained in the database for at least ninety days; therefore a customer may have several records in the 
database at any time. Identical parts have only one cost, but different parts have different costs (e.g., all 
tires cost the same and all engines cost the same, but a tire and an engine do not cost the same). Design 
data structures in Boyce-Codd normal form modeling these data relationships. 
 
14. A small database for a restaurant is needed. The database should contain data for Customer's name, 
Reservation date, Reservation time, Seating preference (booth or table), Area preference (indoor or 
outdoor), Number of people dining, and Telephone number where the customer can be reached if needed 
prior to arrival. Assume that a customer makes only one reservation per date, but do not assume that the 
customer's name can alone act as a primary key. Design data structures in Boyce-Codd normal form 
modeling these data relationships. Be prepared to discuss any additional assumptions you make. 
 
15. A cable television company desires a database containing data on its customers. The following data 
items are needed: Customer name, Customer address, Customer telephone number, Account number, 
Service provided (basic, movie channel A, movie channel B, movie channel C, and/or children's channel), 
the Charge for each service, Equipment used by the customer that belongs to the cable television company 
(decoder, remote control, etc.), an Identifying number for each piece of equipment, and the Extra charge (if 
any) for any equipment used by the customer. Assume that a customer may have more than one account 
number (some customers have rental properties and use the cable service to make their properties more 
attractive). Design data structures in Boyce-Codd normal form modeling these data relationships. 
 
16. Consider the following relations and functional dependencies. Assume in part (a) that the key for R1 is 
AC, the key for R2 is A, and the key for R3 is AC. In part (b), assume that the key for R1 is S and the key for 
R2 is SU. What normal form are the relations currently in? Convert all relations to Boyce-Codd normal form. 
 
a. 
R1 (A,B,C,D) 
R2 (A,B,E) 
R3 (A,C,D,F) 
A -> B 
AC -> D 
A -> E 
B -> CD 
D -> F 
 
b. 
R1 (S,T,U,V,W) 
R2 (S,U,Y) 
S -> TU 
S -> V 
S -> W 
SU -> Y 
TU -> W 
U -> W 
U -> S 
 
17. Suppose you have a data structure for a dance studio. The fields in the data structure are dancer 
identification number, dancer name, dancer address, dancer telephone number, class identification number, 
day that the class meets, and time that the class meets. Assume that each student takes one class, and 
each class meets only once a week. Assume also that dancer identification number is the key. What normal 
form is the data structure currently? Decompose this data structure into at least Boyce-Codd normal form. 
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18. Consider a database used to support a soccer referees association. Suppose the association schedules 
referees for games in three youth leagues in the county, for any high school game in the county, and for any 
college game played at a university in the county. Currently, the database consists of only one data 
structure that contains the following information: game number (unique), date of game, time of game, 
location of game, referee assigned to game, telephone number of referee (in case the game is cancelled), 
home team, visiting team, league in which the teams compete, and telephone number of the league office. 
Data for games for several weeks in advance is maintained in the database. In the case of youth games, a 
referee may be assigned to more than one game per day. Draw a dependency diagram of this data and 
decompose the data into data structures in at least Boyce-Codd normal form. 
 
19. Suppose you have been asked to design a database for a company that manages magazine 
subscriptions. This company mails thousands of advertisements each year to households throughout the 
country offering hundreds of magazine subscriptions at discount subscription rates. The company also has 
a sweepstakes each year in which many prizes are awarded to lucky respondents. Design a database that 
will maintain the following data: subscriber's name and address, magazines subscribed, expiration dates of 
subscriptions, prizes awarded to subscriber (if any), date of last advertisement sent to subscriber, addresses 
of all locations that have received an advertisement regardless of response, and magazines offered and 
terms of subscription for each magazine. 
 
FOR FURTHER READING 
 
Normalization as discussed by the originator of the relational approach is described in: 
Codd, E. F. "Further Normalization of the Relational Database Model." In Data Base Systems, Courant 
Computer Science Symposia 6, Prentice-Hall, Englewood Cliffs, New Jersey, 1972, pp. 65-98. 
For a very readable (and applied) discussion of the normal forms criteria, see 
Kent, William. "A Simple Guide to Five Normal Forms in Relational Database Theory," Communications of 
the ACM, Vol. 26, No. 2, February 1983, pp. 120-125. 
Domain-key normal form was first defined in the following work by Fagin: 
Fagin, R. "A Normal Form for Relational Databases That Is Based on Domains and Keys," ACM 
Transactions on Database Systems, Vol. 6, No. 3, September 1981. 
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Business Relation 
 
FIGURE 5-2 
Travel Club Relation 
 
FIGURE 5-3 
Medical Relation 
 
FIGURE 5-3 (continued) 
 
FIGURE 5-4 
Insurance Relation 
 
FIGURE 5-5 
Dependency Diagram for Figure 5-1 
 
FIGURE 5-6 
Dependency Diagram for Figure 5-2 
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FIGURE 5-7 
Dependency Diagram for Figure 5-3 
 
FIGURE 5-8 
Dependency Diagram for Figure 5-4 
 
FIGURE 5-9 
Normalized Relations for the Data in Figure 5-1 
 
FIGURE 5-10 
Revised Dependency Diagrams for the Data Structure in Figure 5-9 
 
Figure 5-11 
Normalized Relations for the Data in Figure 5-2 
 
FIGURE 5-12 
Revised Dependency Diagrams for the Data Structure in Figure 5-11 
 
FIGURE 5-13 
Normalized Relations for Figure 5-3 
 
FIGURE 5-13 (continued) 
 
FIGURE 5-14 
Revised Dependence Diagrams for the Data Structure in Figure 5-13 
 
FIGURE 5-15 
File Structures. (a) Non-flat file structures have repeating groups; (b) converting the non-flat file in (a) to a 
flat file eliminates repeating data items. 
 
FIGURE 5-16 
Third Normal Form and Boyce-Codd Normal Form. (a) A relation in third normal form but not in Boyce-Codd 
normal form; (b) a Boyce-Codd normalization of (a). 
 
FIGURE 5-17 
Relation Containing Multiple Values 
 
FIGURE 5-18 
A Tuple Has Been Added to the Data. Does employee 100 really use two computer accounts for project 
23796 and only one account for project 34548? 
 
FIGURE 5-19 
Relation Containing Multiple Values 
 
FIGURE 5-20 
An Additional Tuple Demonstrates a Problem Caused by Multiple, Independent Values. Does Clarke really 
enjoy only jazz music only while in the van? 
 
FIGURE 5-21 
The Relation for Figure 5-20. A second tuple is needed to maintain logical consistency. 
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FIGURE 5-22 
The Multiple Values in This Data Are Related, So There Are No Anomalies 
 
FIGURE 5-23 
A Typical Relation Used in Project Management 
 
FIGURE 5-24 
An Apparently Harmless Decomposition of the Relation in Figure 5-23 
 
FIGURE 5-25 
The Result of Joining the Relations in Figure 5-24. Note that tuples that did not exist in the original relation 
have been created. 
 
FIGURE 5-26 
A Set of Non-loss Projections of the Data in Figure 5-23 
 
FIGURE 5-27 
Domain-Key Normal Form. (a) Relation that currently satisfies domain-key normal form; (b) violation of 
domain-key normal form key dependence; (c) violation of domain-key normal form domain dependence. 





















	
  


