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Statistics and risk modelling using Python
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Statistics is the science of learning from experience,
particularly experience that arrives a little bit at a

time.
— B. Efron, Stanford
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Learning objectives

Using Python/SciPy tools:
Analyze data using descriptive statistics and graphical tools

Fit a probability distribution to data (estimate distribution parameters)
Express various risk measures as statistical tests
A Determine quantile measures of various risk metrics

I Build flexible models to allow estimation of quantities of interest and

associated uncertainty measures

@A Select appropriate distributions of random variables/vectors for stochastic

phenomena
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Where does this fit into risk engineering?
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Angle of attack: computational approach to statistics

> Emphasize practical results rather than formulee and proofs

> Include new statistical tools which have become practical thanks to
power of modern computers

« “resampling” methods, “Monte Carlo” methods
> Our target: “Analyze risk-related data using computers”

> If talking to a recruiter, use the term data science

« very sought-after skill in 2019!

ENGINEERING


https://risk-engineering.org/?src=pdfslide

Harvard
Business
Review

ARTWORE: TAMAR COHEI, AlIDREV J BUBOLTZ, 20T
011 APAGE FROI A HIGH SCHOOL YEARBOOK, 8.5

DATA

Data Scientist: The
Sexiest Job of the i s
21st Century

by Thomas H. Davenport and D.J. Patil

5/87 FROM THE OCTOBER 2012 ISSUE



A sought-after skill

Job Trends from Indeed.com
~="Data Scientist” == "Data Science"
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Python and SciPy

Environment used in this coursework:

> Python programming language + SciPy + NumPy + matplotlib libraries
Alternative to Matlab, Scilab, Octave, R

Free software

& matplotlib

A real programming language with simple syntax

« much, much more powerful than a spreadsheet!

Rich scientific computing libraries
statistical measures
visual presentation of data
optimization, interpolation and curve fitting
stochastic simulation
L)

machine learning, image processing...
ENGINEERING
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https://www.scilab.org/
https://www.gnu.org/software/octave/
https://www.r-project.org/

How do | run it?

> Cloud without local installation
» Google Colaboratory, at colab.research.google.com

e CoCalc, at cocalc.com

> Microsoft Windows: install one of
?
« Anaconda from anaconda.com/download/ Python 2 or Python 37

. . Python version 2 reached end-of-
. honxy from python-xy.github.io Y
pyt Y id y-8 life in January 2020. You should

only use Python 3 now.

> MacOS: install one of
¢ Anaconda from anaconda.com/download/

» Pyzo, from pyzo.org

> Linux: install packages python, numpy, matplotlib, scipy
« your distribution’s packages are probably fine
L)

ENGINEERING
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https://cocalc.com/
https://www.anaconda.com/download/
https://python-xy.github.io/
https://www.anaconda.com/download/
https://pyzo.org/

Google Colaboratory

€)>Cc @ @ & https://colab.research.google.com/drive/1gnHVC5VHG8ZXm6rmXe _E4NX2calgS:

() &saintpetersburgipynb ¢
File Edit View Insert Runtime Tools Help Allchanges saved
+ Code + Text

.~ A Monte Carlo simulation of the expected value

Let'stry alue of

[1] inport numpy
inport matplotlib.pyplot as plt
%config InlineBackend.figure formats=["svg"]

def petersburg():
payoff = 1
while numpy. random. uniforn() > 0.5:
payoff *= 2
return payoff

N = 1000000
ganes = nunpy. zeros (N)
for 1 in range(N):
ganes[i] = petersburg()

- colab.research.google.com

> Runs in the cloud, access via web browser
> No local installation needed
> Can save to your Google Drive

> Notebooks are live computational
documents, great for “experimenting”

ENGINEERING
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CoCalc

Que a2

eric marsden@loncsiong .l 1060ms

IPIy]: Notebook ﬂﬂDﬂ' Runs in the cloud, access via web browser

Flo  EQ Vew ien  Gol  Komd  hep

E
No local installation needed

Access to Python in a Jupyter notebook,
Sage, R

L Create an account for free

Gut[12]: <metolotlib.collections. PathCollection at

Similar tools:
o Microsoft Azure Notebooks

« JupyterHub, at jupyter.org/try

— cocalc.com

ENGINEERING
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Python as a statistical calculator

In [1]: import numpy

In [2]: 2 + 2
Out[2]: 4

In [3]: numpy.sqrt(2 + 2)
Out[3]: 2.0

In [4]: numpy.pi
Out[4]: 3.141592653589793

In [5]: numpy.sin(numpy.pi)
Out[5]: 1.2246467991473532e-16

Download this content as @
In [6]: numpy.random.uniform(20, 30) Python notebook at
Out[6]: 28.890905809912784 risk-engineering.org

In [7]: numpy.random.uniform(20, 30)
Out[7]: 20.58728078429875

ENGINEERING
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Python as a statistical calculator

In [3]: obs = numpy.random.uniform(20, 30, 10)

In [4]: obs

Out[4]:

array([ 25.64917726, 35270677, 21.71122725, 27.94435625,
25.43993038, 72479854, 22.35164765, 20.23228629,
26.05497056, 01504739])

In [5]: len(obs)
Out[5]: 10

In [6]: obs + obs

Qut[6]:

array([ 51.29835453, 70541355, 43.42245451, 55.8887125 ,
50.87986076, 44959708, 44.7032953 , 40.46457257,
52.10994112, 03009478])

In [7]: obs - 25
Qut[7]:
array([ 0.64917726, -3.64729323, -3.28877275, 2.94435625,
0.43993038,

-2.27520146, -2.64835235, -4.76771371, 1.05497056,
-2.98495261])

In [8]: obs.mean()
Out[8]: 23.547614834213316

In [9]: obs.sum()
Out[9]: 235.47614834213317

In [10]: obs.min() o
Out[10]: 20.232286285845483 R'

ENGINEERING
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Python as a statistical calculator: plotting

In

In

In

In

Qut[5]:

In [7]:

Out[7]:

import numpy, matplotlib.pyplot as plt
X = numpy.linspace(0, 10, 100)
obs = numpy.sin(x) + numpy.random.uniform(-6.1, 0.1, 100)

plt.plot(x, obs)
[<matplotlib.lines.Line2D at 0x7f47ecc96dad>]

plt.plot(x, obs)

[<matplotlib.lines.Line2D at 0x7f47ed42f0f0>]
1.5 T T T
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Some basic notions in
probability and statistics
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Discrete vs continuous variables

Discrete

A discrete variable takes separate, countable
values

Examples:
> outcomes of a coin toss: {head, tail}
> number of students in the class

> questionnaire responses {very unsatisfied,
unsatisfied, satisfied, very satisfied}

Continuous

A continuous variable is the result of a
measurement (a floating point number)

Examples:

> height of a person

> flow rate in a pipeline
> volume of oil in a drum

> time taken to cycle from home to
university

ENGINEERING
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Random variables

A random variable is a set of possible values from a stochastic experiment

Examples:

sum of the values on two dice throws (a discrete random variable)
height of the water in a river at time 7 (a continuous random variable)
time until the failure of an electronic component

number of cars on a bridge at time ¢

number of new influenza cases at a hospital in a given month

number of defective items in a batch produced by a factory

ENGINEERING
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Probability Mass Functions

> For all values x that a discrete random variable X may take, we
define the function

px(x) & Pr(X takes the value x)
> This is called the probability mass function (PMF) of X

> Example: X = “number of heads when tossing a coin twice”
o px(0) EPr(X=0)="%

e px() ¥ Pr(X =1) =2}

< px() EPr(X=2) =1

ENGINEERING
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Probability Mass Functions: two coins

> Task: simulate “expected number of heads when tossing a coin twice”

> Let’s simulate a coin toss by random choice between o and 1

> numpy.random.randint (8, 2)
1

inclusive lower bound exclusive upper bound

Download this content as @
Python notebook at
risk-engi neering.org

ENGINEERING
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Probability Mass Functions: two coins

> Task: simulate “expected number of heads when tossing a coin twice”

> Let’s simulate a coin toss by random choice between o and 1

> numpy.random.randint (8, 2)
1

inclusive lower bound exclusive upper bound

> Toss a coin twice:

> numpy.random.randint(®, 2, 2)
array ([0, 1])

Download this content as @
Python notebook at
risk-engi neering.org

ENGINEERING
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Probability Mass Functions: two coins

> Task: simulate “expected number of heads when tossing a coin twice”

> Let’s simulate a coin toss by random choice between o and 1

> numpy.random.randint (8, 2)
1

inclusive lower bound exclusive upper bound

> Toss a coin twice:

> numpy.random.randint(8, 2, 2)
array ([0, 1])

> Number of heads when tossing a coin twice:

> numpy.random.randint(®, 2, 2).sum()
1

Download this content as @
Python notebook at
risk-engineering.org

ENGINEERING
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Probability Mass Functions: two coins

> Task: simulate ‘“expected number of heads when tossing a coin twice”

> Do this 1000 times and plot the resulting PMF:

import numpy
import matplotlib.pyplot as plt

= 1000

heads = numpy.zeros(N, dtype=int)

for i 1in range(N):
# second argument to randint is exclusive upper bound
heads[i] = numpy.random.randint(®, 2, 2).sum()

plt.stem(numpy.bincount(heads), use_line_collection=True) heads[1: element

number i of the array
heads

ENGINEERING
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More information on Python programming

For more information on Python syntax, check out the
book Think Python

Purchase, or read online for free at
greenteapress.com/wp/think-python-2e/

oy b Thissle Ll o1 Covmeslaw Sl

O'REILLY" Allen 8. Dewncy

ENGINEERING
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Probability Mass Functions: properties

> A PMF is always non-negative
px(x) 20

> Sum over the support equals 1

pr(x) =1

X

Pra<X<by= Y pxl

x€la,b]

ENGINEERING
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Probability Density Functions

> For continuous random variables, the probability density
function fx(x) is defined by

Pra<X <b) = fub fx(x)dx

> It is non-negative

fx(x) > 0

> The area under the curve (integral over R) is 1

|7 Aetodx =1

ENGINEERING
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Probability Density Function

In reliability engineering, you are often concerned about Exponential distribution PDF
the random variable T representing the time at which a
component fails.

The PDF £ (1) is the “failure density function”. It tells you
the probability of failure around age .

ftHAtf(t)dt
A1-0 At A0 At

lim P <T<t+An) .

ENGINEERING
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Expectation of a random variable

The expectation (or mean) is defined as a weighted average of all
possible realizations of a random variable

Discrete random variable:

N
E[X] = puxy ¥ ) x;xPr(X =x,)
=1

Continuous random variable:

E(X]=pux ¥ f_o:ou x f(u)du

Interpretation:
« the center of gravity of the PMF or PDF

« the average in a large number of independent realizations of your experiment

ENGINEERING
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Important concept: independence

> Definition of statistical independence of two events: the outcome of one
has no effect on the outcome of the other

> Typical example: successive coin tosses

> The probability of two independent events both happening is the
product of their individual probabilities

> Often important in safety analysis:
« if you are responsible for a car accident, your car insurance will become more
expensive, because the event indicates you are more likely to have future car
accidents (they are not independent events)

« if an accident of a specific type occurs on an industrial site, it is less likely it
will occur again the following year because people will make extra efforts to
prevent that type of accident

ENGINEERING
26/87
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lllustration: expected value with coins

> X = “number of heads when tossing a coin twice”
> PMF:

o px(0) EPr(X =0) = /s

o px(1) EPr(X =1) =2

e px(Q)EPr(X=2)="%

l>]E[X]d=ef k x (k)=0><—1+1><—2+2><—1 =1
Px 4 ) 4
k

ENGINEERING
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lllustration: expected value of a dice roll

6
> Expected value of a dice roll is Z i x é =35
i=1

> If we toss a dice a large number of times, the mean value should
converge to 3.5

> Let’s check that in Python

> numpy.random.randint(1l, 7, 100).mean()
4.2

> numpy.random.randint(l, 7, 10600).mean()
3.478

(These numbers will be different for different executions. The greater the number of
random “dice throws” we simulate, the greater the probability that the mean will be
close to 3.5.)

ENGINEERING
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lllustration: expected value of a dice roll

We can plot the speed of convergence of the mean
towards the expected value as follows.

Expectation of a dice roll

N = 1000
roll = numpy.zeros(N)
expectation = numpy.zeros(N)
for i in range(N):

roll[i] = numpy.random.randint(1l, 7)
for i 1in range(l, N):

expectation[i] = numpy.mean(roll[0:1i])
plt.plot(expectation)

@
=
]
=
<
2
]
1
a
k3
o

400 600
Number of rolls
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Mathematical properties of expectation

If ¢ is a constant and X and Y are random variables, then

> Elc] =c¢
> E[cX] = cE[X]
> Elc+X] =c+ B[X]

> E[X+7Y]=E[X]+E[Y]

Note: in general E[g(X)] # g(E[X])

ENGINEERING
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Aside: existence of expectation

> Not all random variables have an expectation

> Consider a random variable X defined on some (infinite) sample space Q
so that for all positive integers i, X takes the value

« 2/ with probability 271
« —2' with probability 277!

> Both the positive part and the negative part of X have infinite expectation
in this case, so E[X] would have to be co — co (meaningless)

ENGINEERING
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Variance of a random variable

> The variance provides a measure of the dispersion around the mean
« intuition: how “spread out” the data is

> For a discrete random variable:

N
Var(X) = 0% © > (X; - 1x)?Pr(X = x,)

i=

> For a continuous random variable:

Var(X) = o3 & [~ (x - p0)?f (w)du

> In Python:

« obs.var() if obs is a NumPy vector

« numpy.var (obs) for any Python sequence (vector or list) In £xeel, function VAR |

ENGINEERING
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Variance with coins

> X = “number of heads when tossing a coin twice”

> PMF:
o px(0) ¥Pr(X=0) ="
o px() ¥Pr(X=1) =2}
o px(2) ¥Pr(X=2) ="

N
Var(X) € ) (x; — px)?Pr(X = x;)
i=1

1 , 2 , 1 , 1
=7xO-D2+ I x(1-D2+ 2 x2-12=5

ENGINEERING
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Variance of a dice roll

> Analytic calculation of the variance of a dice roll:

N
Var(X) € 3 (X; - 1x)?Pr(X = x,)

> Let’s reproduce that in Python p—

> rolls = numpy.random.randint(l, 7, 1000)
> len(rolls)

1000

> rolls.var()

2.9463190000000004

ENGINEERING
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Properties of variance as a mathematical operator

If ¢ is a constant and X and Y are random variables, then

> Var(X) > 0 (variance is always non-negative)
> Var(c) =0 Beware:

Var(c + X) = Var(X) > E[X?] # (E[X])?
Var(cX) = ¢2 Var(X) > E[VX] # VE[X]

Var(X + Y) = Var(X) + Var(Y), if X and Y are independent

Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y) if X and Y are dependent

ENGINEERING
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Properties of variance as a mathematical operator

If ¢ is a constant and X and Y are random variables, then

> Var(X) > 0 (variance is always non-negative)
> Var(c) =0 Beware:

Var(c + X) = Var(X) > E[X?] # (E[X])?
Var(cX) = ¢2 Var(X) > E[VX] # VE[X]

Var(X + Y) = Var(X) + Var(Y), if X and Y are independent

Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y) if X and Y are dependent

Note:
> Cov(X,Y) ¥ E[(X - E[XD(Y - E[Y]]

> Cov(X,X) = Var(X) °

ENGINEERING
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Standard deviation

N
Formula for variance: Var(X) & Z(Xi - ux)?Pr(X = x,)
i=1

If random variable X is expressed in metres, Var(X) is in m?

To obtain a measure of dispersion of a random variable around its
expected value which has the same units as the random variable itself,
take the square root

Standard deviation ¢ ¥ Var(X)

In Python:
« obs.std() if obs is a NumPy vector

» numpy.std(obs) for any Python sequence (vector or list)

n &xcel, function STDEV I

ENGINEERING
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Properties of standard deviation

> Suppose Y = aX + b, where

e aand b are scalar

e X and Y are two random variables
> Then o(Y) = |a| 0(X)

> Let’s check that with NumPy:

numpy . random.uniform(1680, 200, 1000)
=22
16
=a*X+b
.std()
914.94058476118835
> abs(a) * X.std()
914.94058476118835

ENGINEERING
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Properties of expectation & variance: empirical testing with numpy
> E[X +7Y]=E[X]+E[Y]

numpy . random.randint(1, 101, 1000)
numpy . random.randint(-300, -199, 1000)
> mean ()

50.575000000000003

> Y.mean()

-251.613

> (X + Y).mean()

-201.038

>
>

X
Y
X.

ENGINEERING
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Properties of expectation & variance: empirical testing with numpy
> E[X +7Y]=E[X]+E[Y]

= numpy.random.randint(1, 101, 1060)

= numpy.random.randint(-300, -199, 1000)
mean ()

50.575000000000003

> Y.mean()

-251.613

> (X + Y).mean()

-201.038

X
Y
X.

> Var(cX) = ¢2 Var(X)

> numpy.random.randint(1, 101, 1000).var()
836.616716

> numpy.random.randint(5, 501, 1600).var()
20514.814318999997

>5 x 5 x 836

20900

ENGINEERING
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Properties of expectation & variance: empirical testing with numpy
> E[X +7Y]=E[X]+E[Y]

= numpy.random.randint(1, 101, 1060)

= numpy.random.randint(-300, -199, 1000)
mean ()

50.575000000000003

> Y.mean()

-251.613

> (X + Y).mean()

-201.038

X
Y
X.

> Var(cX) = ¢2 Var(X)

> numpy.random.randint(1, 101, 1000).var()
836.616716

> numpy.random.randint(5, 501, 1600).var()
20514.814318999997

>5 x 5 x 836

20900
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Cumulative Distribution Function

> The cumulative distribution function (CDF) of random variable X, denoted

by Fy(x), indicates the probability that X assumes a value < x, where x is
any real number

Fy(x) =Pr(X <x) -—oo<x<o0

> Properties of a CDF:
o Fx(x) is a non-decreasing function of x
e 0<Fyx) <1
o lim, . Fy(x) = 1
lim,, , Fy(x) =0
if x < y then Fy(x) < Fx(y)
Pr(a<X <b) = Fy(b) - Fy(a) VYb>a

ENGINEERING
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CDF of a discrete distribution

Heads from two coin tosses: PMF
Fx(x) =Pr(X <x) —oco<x<oo -

=) PriX =x)

X;<x
The CDF is built by accumulating probability as x

increases.

Consider the random variable X = “number of heads when
tossing a coin twice”.

Heads from two coin tosses: CDF

PMF, px(x) = Pr(X =x) 02 jii=-
CDF, Fx(x) = Pr(X < JC) 00 05 1.0 15 2.
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CDF of a discrete distribution

Fy(x) =Pr(X <x) —oo<x<oo

=Y Pr(X=x)

X; <X

Example: sum of two dice

Sum of two dice: PMF Sum of two dice: CDF

lll“

0.150
0.125

0.100

0.075
0.050
0.025 ] l
0000 o @
0 2 4

6
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CDF of a continuous distribution

Fx(x) = Pr(X <x)
= f_xoof(u)du

4 2 0 2 4

Python: scipy.stats.norm(loc=mu, scale=sigma).pdf(x)

NORMAL CDF

4 2 0 2 4

Python: scipy.stats.norm(loc=mu, scale=sigma). cdf(x)Ri
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Interpreting the CDF

In reliability engineering, we are often
interested in the random variable T

representing time to failure of a component.

The cumulative distribution function tells you
the probability that lifetime is < r.

—
=

=
et

>
h=4
)
<
)
)
<4
a

t
F(t) =Pr(T <) Time to failure (T)
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Exercise

Problem
Field data tells us that the time to failure of a pump, X, is normally distributed.
The mean and standard deviation of the time to failure are estimated from

historical data as p = 3200 hours and o = 600 hours.

What is the probability that a pump will fail before 2000 hours of operation?
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Exercise

44/87

Problem

Field data tells us that the time to failure of a pump, X, is normally distributed.

The mean and standard deviation of the time to failure are estimated from
historical data as p = 3200 hours and ¢ = 600 hours.

What is the probability that a pump will fail before 2000 hours of operation?

Solution

We are interested in calculating Pr(X < 2000) and we know that X follows a
norm(3200, 600) distribution. We can use the CDF to calculate Pr(X <
2000).

We want norm(3200, 600).cdf (2000), which is 0.022750 (or 2.28%).
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Exercise

Problem

Field data tells us that the time to failure of a pump, X, is normally distributed.
The mean and standard deviation of the time to failure are estimated from
historical data as p = 3200 hours and o = 600 hours.

What is the probability that a pump will fail after it has worked for at least

2000 hours?

ENGINEERING



https://risk-engineering.org/?src=pdfslide

Exercise

45/87

Problem

Field data tells us that the time to failure of a pump, X, is normally distributed.
The mean and standard deviation of the time to failure are estimated from
historical data as p = 3200 hours and ¢ = 600 hours.

What is the probability that a pump will fail after it has worked for at least
2000 hours?

Solution

We are interested in calculating Pr(X > 2000) and we know that X follows a
norm(3200, 600) distribution. We know that Pr(X > 2000) = 1 - Pr(X <
2000).

We want 1 - norm(3200, 608).cdf(2080), which is 0.977 (or 97.7%).
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The quantile function

The quantile function is the inverse of the CDF.

The median is the point where half the
population is below and half is above (it’s the
0.5 quantile, and the 50" percentile).

Consider a normal distribution centered in 120
with a standard deviation of 2o0.

> +dmport scipy.stats

> distrib = scipy.stats.norm(120, 20)
> distrib.ppf(8.5)

120.0

> distrib.cdf(126.0)

0.5

QUANTILE FUNCTION

MEDIAN - 120.0

-
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Quantile measures

A quantile measure is a cutpoint in the
probability distribution indicating the value
below which a given percentage of the sample
falls.

The o0.05 quantile is the x value which has 5% of
the sample smaller than x.

The 0.05 quantile of the standard normal distribution
It’s also called the 5th percentile. (centered in o, standard deviation of 1)

import scipy.stats
scipy.stats.norm(0, 1).ppf(0.05)
-1.6448536269514729
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Quantile measures

SRS e
T
|
Weight-for-age percentiles:
Girls, 2 to 20 years

Quantile measures are often used in health.

To the right, illustration of the range of baby
heights and weights as a function of their age.

i

=5 i
S ESs:
|ERESERE!

2 3 4 5 6 7 8 9 10 1o W 1 s 6 7B 9 2
Age (years)

Image source: US CDC
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Quantile measures in risk analysis

Risk analysis and reliability engineering: analysts are
interested in the probability of extreme events

> what is the probability of a flood higher than my dike?

Longitude in meters

> how high do I need to build a dike to protect against
hundred-year floods?

> what is the probability of a leak given the corrosion T

Latitude in meters

6000 8000

measurements I have made?

g . . Th 1 o = 5 0 =
Problem: these are rare events so it’s difficult to obtain ree percentile measures (9‘77 green 9%
blue, 99.99% = red) of the spatial risk of fallback

confidence that a model representing the underlying from a rocket launcher. Dotted lines indicate
mechanism works well for extremes uncertainty range.

Image source: aerospacelab-journal.org/sites/www.aerospacelab-journal.org/files/ALO4-13_0.pdf
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Quantiles and confidence intervals

A 90% confidence interval is the set of points
between the o.05 quantile (5% of my

observations are smaller than this value) and 1 “aoss) 29 b
the 0.95 quantile (5% of my observations are
larger than this value).

QUANTILE FUNCTION

Q(0.05)-87.1
<o

In the example to the right, the 90% confidence
interval is [87.1, 152.9].
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Scipy.stats package

> The scipy.stats module implements many
continuous and discrete random variables and their
associated distributions

 binomial, poisson, exponential, normal, uniform,
weibull...

> Usage: instantiate a distribution then call a method

« rvs: random variates
pdf: Probability Density Function
cdf: Cumulative Distribution Function
sf: Survival Function (1-CDF)
ppf: Percent Point Function (inverse of CDF)

isf: Inverse Survival Function (inverse of SF)
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Simulating dice throws

>

Maximum of 1000 throws

> dice = scipy.stats.randint(1, 7)
> dice.rvs(10080).max()

6 exclusive upper
bound
What is the probability of a die rolling 4?

> dice.pmf(4)
0.16666666666666666

What is the probability of rolling 4 or below?

> dice.cdf(4)
0.66666666666666663

What is the probability of rolling between 2 and 4 (inclusive)?

> dice.cdf(4) - dice.cdf(1)
0.5
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Simulating dice

>
>
2
>
>
>
a
>
3
>
4
>
N
>
>

import numpy
import matplotlib.pyplot as plt

toss = numpy.random.choice(range(1l, 7))
toss

= 10000
tosses = numpy.random.choice(range(l, 7), N)
tosses
rray([6, 6, 4, ..., 2, 4, 5])
tosses.mean()
.5088
numpy .median(tosses)
.0
len(numpy.where(tosses > 3)[0]) / float(N)
.5041
X, Yy = numpy.unique(tosses, return_counts=True)
plt.stem(x, y/float(N))
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Scipy.stats examples

> Generate 5 random variates from a > import scipy.stats

continuous uniform distribution between go . .
> u = scipy.stats.uniform(90, 10)

and 100 > u.rvs(5)
array([ 94.0976853 , 92.41951494,
> Check that the expected value of the 96.25127254, 91.69097729,
96.1811148 1)
> u.rvs(1000).mean()

Check th d ¢ . 1 94.892801456986376
> eck that around 20% of variates are less > (u.rvs(1600) < 92).sum() / 1688.8

distribution is around 95

than 92 0.193
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Some
important
probability

distributions




Some important probability distributions

Coin tossing with uneven coin Bernoulli o .bernoultli
Rolling a dice uniform 5 .randint
Counting errors/successes Binomial o .binom
Trying until success geometric 5 .geom
Countable, rare events whose occurrence is independent  Poisson o .poisson

Random “noise”, sums of many variables normal
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Bernoulli trials

> A trial is an experiment which can be repeated many times with
the same probabilities, each realization being independent of the
others

> Bernoulli trial: an experiment in which N trials are made of an
event, with probability p of “success” in any given trial and
probability 1 - p of “failure”

 “success” and “failure” are mutually exclusive

. kob B 1li (1654~
+ example: sequence of coin tosses Jakob Bernoulli (1654-1705)

« example: arrival of requests in a web server per time slot

ENGINEERING
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The geometric distribution (trying until success)

> We conduct a sequence of Bernoulli trials, each with success
probability p

Geometric distribution PMF, p=0.3
> What’s the probability that it takes & trials to get a success?
» Before we can succeed at trial k, we must have had & — 1 failures

» Each failure occurred with probability 1 — p, so total probability
(1-p*!

| ‘ [ [
« Then a single success with probability p ’ .

0.0 25 5.0 75 100 125 150

> PriX=k) = (1-p*lp
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The geometric distribution: intuition

> Suppose I am at a party and I start asking girls to dance. Let X be the number
of girls that I need to ask in order to find a partner.

« If the first girl accepts, then X =1
If the first girl declines but the next girl accepts, then X = 2

> X = k means that I failed on the first k — 1 tries and succeeded on the k' try
« My probability of failing on the first try is (1 - p)
« My probability of failing on the first two tries is (1 - p)(1 — p)
« My probability of failing on the first n — 1 tries is (1 — p)*~!
« Then, my probability of succeeding on the n™ try is p

> Properties:
« B[X]=1

« Var(x) = =2
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The binomial distribution (counting successes)

Also arises when observing multiple Bernoulli trials

« exactly two mutually exclusive outcomes, “success” and “failure”

Binomial (p, k,n): probability of observing k successes in n trials, Binomial distribution PMF, n=20, p=0.3

where probability of success on a single trial is p

 example: toss a coin n times (p = 0.5) and see k heads

0.15

0.10

We have k successes, which happens with a probability of p*

0.05 ‘ ‘
0.00 .'I IT’--...-.
5 10 15

0

We have n - k failures, which happens with probability (1 - p)"~*

20

We can generate these k successes in many different ways from
n trials, (}) ways

Reminder: binomial

Pr(X =k) = () (1 -p)"p*
coefficient () is sy
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Binomial distribution: application

Consider a medical test with an error rate of
0.1 applied to 100 patients
import scipy.stats
What is the probability that we see at most 1
test error? test = scipy.stats.binom(n=1080, p=0.1)
test.cdf (1)
.00032168805319411544
test.cdf (10)
10 errors? .58315551226649232
test.ppf(0.05)
If the random variable X represents the -9
number of test errors, what is the smallest k

such that P(X < k) is at least 0.05?

What is the probability that we see at most

When reporting results, make sure you pay
attention to the number of significant figures

in the input data (2 in this case). .
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Binomial distribution: application

Q: A company drills 9 oil exploration wells, each with a 10% chance of success. Eight
of the nine wells fail. What is the probability of that happening?
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Binomial distribution: application

Q: A company drills 9 oil exploration wells, each with a 10% chance of success. Eight
of the nine wells fail. What is the probability of that happening?

Analytic solution Answer by simulation

Each well is a binomial trial with p = 0.1. We want Run 20000 trials of the model and count the
the probability of exactly one success. number that generate 1 positive result.

import scipy.stats

import scipy.stats
N = 20_000

wells = scipy.stats.binom(n=9, p=0.1)
wells.pmf (1) wells = scipy.stats.binom(n=9, p=0.1)

.38742048899999959 trials = wells.rvs(N)
(trials == 1).sum() / float(N)

S 86110999999999998
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Binomial distribution: application

Q: A company drills g oil exploration wells, each with a 10% chance of success. Eight
of the nine wells fail. What is the probability of that happening?

Analytic solution Answer by simulation
Each well is a binomial trial with p = 0.1. We want Run 20000 trials of the model and count the
the probability of exactly one success. number that generate 1 positive result.
> dimport scipy.stats > import scipy.stats
> wells = scipy.stats.binom(n=9, p=0.1) > N = 20_0600
> wells.pmf (1) > wells = scipy.stats.binom(n=9, p=0.1)
0.38742048899999959 > trials = wells.rvs(N)
> (trials == 1).sum() / float(N)
0.38679999999999998

The probability of all 9 wells failing is 0.9° = 0.3874 (and also wells.pmf (0)).

The probability of at least 8 wells failing is wells.cdf (1). It’s also wells.pmf(8) +
wells.pmf (1) (it’s 0.7748).

ENGINEERING
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Binomial distribution: properties

Exercise: check empirically (with SciPy) the following properties
of the binomial distribution:

> the mean of the distribution (u,) is equal to n x p
> the variance (¢%) isnxp x (1 - p)

> the standard deviation (¢,) is ynxp x (1 = p)
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Gaussian (normal) distribution

The famous “bell shaped” curve, fully described by its mean and
standard deviation

Good representation of distribution of measurement errors and
many population characteristics

« size, mechanical strength, duration, speed

Symmetric around the mean

Mean = median = mode
Python: scipy.stats.norm(u, o)

Excel: NORMINV (RAND(), W, o)
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Scipy.stats examples

Consider a Gaussian distribution centered in
5, standard deviation of 1

Check that half the distribution is located to
the left of 5

Find the first percentile (value of x which has
1% of realizations to the left)

Check that it is equal to the 99% survival
quantile

>
>
0
>
5
>
2
>
2
>
0

dist = scipy.stats.norm(5, 1)
dist.cdf(5)

35

dist.ppf(0.5)

.9

dist.ppf(0.01)

.6736521259591592

dist.isf(6.99)

.6736521259591592

dist.cdf(2.67)

.0099030755591642452
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Area under the normal distribution

In [1]: import numpy
In [2]: from scipy.stats import norm

In [3]: norm.ppf(0.5) [ [
In (81 mormmf(09  quantile function

In [4]: norm.cdf(0)
Out[4]: 0.5

In [5]: norm.cdf(2) - norm.cdf(-2) .
Out[5]: 0.95449973610364158 there is a 95% chance that
the number drawn falls within
In [6]: norm.cdf(3) - norm.cdf(-3) L.
out[6]: 0.99730020393673979 2 standard deviations of the mean

statistics textbooks contained large tables
tribution. With cheap

n prehistarie times, :
of quantile values for the normal dis ,
computing power, n0 longer necessary! )

ENGINEERING



https://risk-engineering.org/?src=pdfslide

The “68-95-99.7 rule”

> The 68-95-99.7 rule (aka the three-sigma rule)
states that if x is an observation from a normally
distributed random variable with mean p and
. . 99.7% of the data are within
standard deviation o, then

[ 3standard deviationsof themean —— 7|

95% within
e Pr(p—0<x<p+o0)~0.6827 < 2 standard deviations |

68% within
o Pr(p-20 <x<p+20)=09545 [ 2 standard =

deviation

o Pr(u—-30 <x<pu+30)~09973

The 60 quality management method pioneered by
Motorola aims for 99.99966% of production to
meet quality standards

« 3.4 defective parts per million opportunities (DPMO)
« actually, that’s only 4.5 sigma!

o (scipy.stats.norm.cdf(6) -
scipy.stats.norm.cdf(-6)) * 100 —

99.999999802682453

L)
Image source: Wikipedia on 68-95-99.7 rule
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Central limit theorem

> Theorem states that the mean (also true of the sum) of a set of
random measurements will tend to a normal distribution, no
matter the shape of the original measurement distribution

> Part of the reason for the ubiquity of the normal distribution in
science

> Python simulation:

= 10_000
sim = numpy.zeros(N)
for i 1in range(N):
sim[i] = numpy.random.uniform(30, 40, 100).mean()
plt.hist(sim, bins=20, alpha=0.5, density=True)

> Exercise: try this with other probability distributions and
check that the simulations tend towards a normal distribution
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Galton board

69/87

> The Galton board (or “bean machine”) has two parts:
« top: evenly-spaced pegs in staggered rows

» bottom: evenly-spaced rectangular slots

> Balls introduced at the top bounce of the pegs, equal probability
of going right or left at each successive row

« each vertical step is a Bernoulli trial

> Balls collect in the slots at the bottom with heights following a
binomial distribution

« and for large number of balls, a normal distribution

> Interactive applet emulating a Galton board:

— randomservices.org/random/apps/GaltonBoardGame.html

Named after English .
psychometrician Sir Francis
Calton (1822-1971)
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Exponential distribution

Exponential distribution PDF

—_—-0s
—_ 10
— -0

PDF: f,(z) = 2e *%,2>0
CDF: Pr(Z <z) =Fz(z) =1 —e¢™*2

The hazard function, or failure rate, is constant, equal to A

o 1/A is the “mean time between failures”, or MTBF

total number of failures
« A can be calculated by W

Often used in reliability engineering to represent failure of
electronic equipment (no wear)

Property: expected value of exponential random variable is +
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Exponential distribution

import scipy.stats

lda = 25

dist = scipy.stats.expon(scale=1/float(lda))
obs = dist.rvs(size=1000)

obs.mean ()

.041137615318791773

obs.std()

.03915081431615041

1/float(lda)

.04

Let’s check that the expected value of
1

an exponential random variable is

@ V © V. © V V V V Vv
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Exponential distribution: memoryless property

> An exponentially distributed random variable T obeys

Pr(T >s+¢t|T >s)=Pr(T >1), Vs,t >0

where the vertical bar | indicates a conditional probability.

> Interpretation: if 7 represents time of failure

« The distribution of the remaining lifetime does not depend on how long the
component has been operating (item is “as good as new”)

« Distribution of remaining lifetime is the same as the original lifetime

» An observed failure is the result of some suddenly appearing failure, not due to
gradual deterioration
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Failure of power transistors (1/2)

> Suppose we are studying the reliability of a power system, which fails if
any of 3 power transistors fails

> Let X, Y, Z be random variables modelling failure time of each transistor
(in hours)

« transistors have no physical wear, so model by exponential random variables

« failures are assumed to be independent
> X ~ Exp('/so00)  (mean failure time of 5000 hours)
> Y ~ Exp('/soc0)  (mean failure time of 8000 hours)
> Z ~ Exp('/s000)  (mean failure time of 4000 hours)
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Failure of power transistors (2/2)

> System fails if any transistor fails, so time to failure 7 is min(X, Y, Z)

Pr(T<t)=1-Pr(T >1)
=1-Pr(min(X,Y,Z) > 1)
=1-PriX>tY>tZ>1)
=1-Pr(X>1t)xPr(Y >t) xPr(Z>1) (independence)
=1-(1-Pr(X<1)(1-Pr(¥ <)) (1-Pr(Z <1)
=1—(1-(1=e™3000)) (1= (1-¢/8000)) (1 — (1 - #/4000)) (exponential CDF)
=1- e—t/SOOOe—t/SOOOe—t/4000
= 1 — (oot oot o)
=1- e70.0005751
> System failure time is also exponentially distributed, with parameter 0.000575

> Expected time to system failure is 1/0.000575 = 1739 hours
()
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75/87

> A Poisson process is any process where independent events occur at
a constant average rate

« time between each pair of consecutive events follows an exponential
distribution with parameter A (the arrival rate)

« each of these inter-arrival times is assumed to be independent of other
inter-arrival times

Poisson process: « example: babies are born at a hospital at a rate of five per hour

exponential > The process is memoryless: number of arrivals in any bounded

arrival times interval of time after time ¢ is independent of the number of arrivals
before ¢

> Good model for many types of phenomena:

« number of road crashes in a zone

« number of faulty items in a production batch
« arrival of customers in a queue

« occurrence of earthquakes
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The Poisson distribution

Poisson distribution PMF, A = 3

> The probability distribution of the counting process
associated with a Poisson process
« the number of events of the Poisson process over a time
interval

> Probability mass function:

k,— 24
Pr(Z = k) = %k =0,1,2...

> The parameter A is called the intensity of the Poisson

istribution PMF, A = 12

> Python: scipy.stats.poisson(A)

distribution
« increasing A adds more probability to larger values | | l I
‘ Ik
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Poisson distribution and Prussian horses

> Number of fatalities for the Prussian cavalry resulting from
being kicked by a horse was recorded over a period of 20 years

o for 10 army corps, so total number of observations is 200

Prussian army deaths from horse kicks

Deaths Occurrences — R

—®_ Observed

(o] 109
65
22

1
2
3 3
4

>4

> It follows a Poisson distribution

> Exercise: reproduce the plot on the right which shows a fit
between a Poisson distribution and the historical data Ri
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The Poisson distribution: properties

Expected value of the Poisson distribution is equal to its parameter p
Variance of the Poisson distribution is equal to its parameter p
The sum of independent Poisson random variables is also Poisson

Specifically, if ¥, and Y, are independent with ¥; ~ Poisson(y;) fori=1,2
then Y| + Y, ~ Poisson(u; + ptp)

Exercise: test these properties empirically with Python

WNotation: ~ means “follows ‘
in distribution”
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Simulating earthquake occurrences (1/2)

> Suppose we live in an area where there are
typically o.03 earthquakes of intensity 5 or
more per year

Assume earthquake arrival is a Poisson
process

« interval between earthquakes follows an
exponential distribution

« events are independent

Simulate the random intervals between the
next earthquakes of intensity 5 or greater

What is the 25 percentile of the interval
between 5+ earthquakes?

> from scipy.stats import expon

> expon(scale=1/0.03).rvs(size=15)

array([23.23763551, 28.73209684, 29.7729332,
46.66320369, 4.03328973, 84.03262547,
42.22440297, 14.14994806, 29.90516283,
87.07194806, 11.25694683, 15.08286603,
35.72159516, 44.70480237, 44.67294338])

> expon(scale=1/0.03).ppf(0.25)
9.5894024150593644
# answer i1s “around 10 years”
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Simulating earthquake occurrences (2/2)

Earthquake locations

> Worldwide: 144 earthquakes of magnitude 6 or greater
in 2013 (one every 60.8 hours on average)

> Rate: A = per hour

_L
608
> What’s the probability that an earthquake of
magnitude 6 or greater will occur (worldwide) in the
next day?
« right: plot of the CDF of the corresponding exponential
distribution

e scipy.stats.expon(scale=60.8).cdf(24) =
0.326

Probability of an earthquake

100 150
Elapsed time (hours)

Data source: earthquake.usgs.gov/earthquakes/search/
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Weibull distribution

Weibull distribution PDF

> Very flexible distribution, can model left-skewed, right-skewed, and
symmetric data

> Widely used for modeling reliability data

> Python: scipy.stats.dweibull(k, u, 1)
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Weibull distribution PDF

Weibull distribution

> k < 1: the failure rate decreases over time
« significant “infant mortality”

o defective items failing early and being weeded out of the population

> k = 1: the failure rate is constant over time (equivalent to an
exponential distribution)

» suggests random external events are causing failure

> k> 1: the failure rate increases with time

« “aging” process causes parts to be more likely to fail as time goes on
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Student’s t distribution PDF

Student’s t distribution

Symmetric and bell-shaped like the normal distribution, but
with heavier tails

As the number of degrees of freedom df grows, the t-distribution
approaches the normal distribution with mean o and variance 1

Python: scipy.stats.t(df)

First used by W. S. Gosset (aka Mr Student, 1876-1937), for
quality control at Guinness breweries
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Distribution choice flowchart

Is the data discrete or
continuous?

Discrete Continuous
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Source of this useful flowchart is uncertain, possibly it is due to Aswath Damodaran, NYU
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Image credits

Dice on slide 39, flic.kr/p/9S35g, CC BY-NC-ND licence
Galton board on slide 57: Wikimedia Commons, CC BY-SA licence
Transistor on slide 61: flic.kr/p/4d4XSj, CC BY licence)

Photo of Mr Gosset (aka Mr Student) on slide 72 from Wikimedia Commons,
public domain

Microscope on slide 73 adapted from flic.kr/p/aeh135, CC BY licence

For more free content on risk engineering,

visit risk-engineering.org O
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Further reading

> SciPy lecture notes: scipy-lectures.org

> Book Statistics done wrong, available online at
statisticsdonewrong.com

> A gallery of interesting Python notebooks:
github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-
Jupyter-Notebooks

For more free content on risk engineering,
visit risk-engineering.org
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Feedback welcome! A opmamss

This presentation is distributed under the terms of the
Creative Commons Attribution — Share Alike licence

’ @LearnRiskEng

n fb.me/RiskEngineering

Was some of the content unclear? Which parts were most useful to
you? Your comments to feedback@risk-engineering.org
(email) or @LearnRiskEng (Twitter) will help us to improve these
materials. Thanks!

For more free content on risk engineering,
visit risk-engineering.org )
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