
Statistics and risk modelling using Python

Eric Marsden

<eric.marsden@risk-engineering.org>

Statistics is the science of learning from experience,
particularly experience that arrives a little bit at a
time.
— B. Efron, Stanford

https://risk-engineering.org/?src=pdfslide

Learning objectives

Using Python/SciPy tools:

1 Analyze data using descriptive statistics and graphical tools

2 Fit a probability distribution to data (estimate distribution parameters)

3 Express various risk measures as statistical tests

4 Determine quantile measures of various risk metrics

5 Build flexible models to allow estimation of quantities of interest and
associated uncertainty measures

6 Select appropriate distributions of random variables/vectors for stochastic
phenomena

https://risk-engineering.org/?src=pdfslide

Where does this fit into risk engineering?

data probabilistic model

event probabilities

consequence model

event consequences

risks

curve
fitting

costs

decision-making

criteria

These slides

https://risk-engineering.org/?src=pdfslide

Where does this fit into risk engineering?

data probabilistic model

event probabilities

consequence model

event consequences

risks

curve
fitting

costs

decision-making

criteria

These slides

https://risk-engineering.org/?src=pdfslide

Where does this fit into risk engineering?

data probabilistic model

event probabilities

consequence model

event consequences

risks

curve
fitting

costs

decision-making

criteria

These slides

https://risk-engineering.org/?src=pdfslide

Angle of attack: computational approach to statistics

▷ Emphasize practical results rather than formulæ and proofs

▷ Include new statistical tools which have become practical thanks to
power of modern computers
• “resampling” methods, “Monte Carlo” methods

▷ Our target: “Analyze risk-related data using computers”

▷ If talking to a recruiter, use the term data science
• very sought-after skill in 2019!

https://risk-engineering.org/?src=pdfslide

A sought-after skill

Source: indeed.com/jobtrends

https://risk-engineering.org/?src=pdfslide

A long history

John Graunt collected and published public
health data in the uk in the Bills of Mortality
(circa 1630), and his statistical analysis identified
the plague as a significant source of premature
deaths.

Image source: British Library, public domain

https://risk-engineering.org/?src=pdfslide

Python and SciPy

Environment used in this coursework:

▷ Python programming language + SciPy + NumPy + matplotlib libraries

▷ Alternative to Matlab, Scilab, Octave, R

▷ Free software

▷ A real programming language with simple syntax
• much, much more powerful than a spreadsheet!

▷ Rich scientific computing libraries
• statistical measures

• visual presentation of data

• optimization, interpolation and curve fitting

• stochastic simulation

• machine learning, image processing…

https://risk-engineering.org/?src=pdfslide
https://www.scilab.org/
https://www.gnu.org/software/octave/
https://www.r-project.org/

How do I run it?

▷ Cloud without local installation
• Google Colaboratory, at colab.research.google.com

• CoCalc, at cocalc.com

▷ Microsoft Windows: install one of
• Anaconda from anaconda.com/download/

• pythonxy from python-xy.github.io

▷ MacOS: install one of
• Anaconda from anaconda.com/download/

• Pyzo, from pyzo.org

▷ Linux: install packages python, numpy, matplotlib, scipy
• your distribution’s packages are probably fine

Python 2 or Python 3?

Python version 2 reached end-of-
life in January 2020. You should
only use Python 3 now.

https://risk-engineering.org/?src=pdfslide
https://colab.research.google.com/
https://cocalc.com/
https://www.anaconda.com/download/
https://python-xy.github.io/
https://www.anaconda.com/download/
https://pyzo.org/

Google Colaboratory

→ colab.research.google.com

▷ Runs in the cloud, access via web browser

▷ No local installation needed

▷ Can save to your Google Drive

▷ Notebooks are live computational
documents, great for “experimenting”

https://risk-engineering.org/?src=pdfslide
https://colab.research.google.com/

CoCalc

→ cocalc.com

▷ Runs in the cloud, access via web browser

▷ No local installation needed

▷ Access to Python in a Jupyter notebook,
Sage, R

▷ Create an account for free

▷ Similar tools:

• Microsoft Azure Notebooks

• JupyterHub, at jupyter.org/try

https://risk-engineering.org/?src=pdfslide
https://cocalc.com/
https://notebooks.azure.com/
https://jupyter.org/try

Python as a statistical calculator

In [1]: import numpy

In [2]: 2 + 2
Out[2]: 4

In [3]: numpy.sqrt(2 + 2)
Out[3]: 2.0

In [4]: numpy.pi
Out[4]: 3.141592653589793

In [5]: numpy.sin(numpy.pi)
Out[5]: 1.2246467991473532e-16

In [6]: numpy.random.uniform(20, 30)
Out[6]: 28.890905809912784

In [7]: numpy.random.uniform(20, 30)
Out[7]: 20.58728078429875

Download this content as a

Python notebook at

risk-engineering.org

https://risk-engineering.org/?src=pdfslide
https://risk-engineering.org/

Python as a statistical calculator

In [3]: obs = numpy.random.uniform(20, 30, 10)

In [4]: obs
Out[4]:
array([25.64917726, 21.35270677, 21.71122725, 27.94435625,

25.43993038, 22.72479854, 22.35164765, 20.23228629,
26.05497056, 22.01504739])

In [5]: len(obs)
Out[5]: 10

In [6]: obs + obs
Out[6]:
array([51.29835453, 42.70541355, 43.42245451, 55.8887125 ,

50.87986076, 45.44959708, 44.7032953 , 40.46457257,
52.10994112, 44.03009478])

In [7]: obs - 25
Out[7]:
array([0.64917726, -3.64729323, -3.28877275, 2.94435625,
0.43993038,

-2.27520146, -2.64835235, -4.76771371, 1.05497056,
-2.98495261])

In [8]: obs.mean()
Out[8]: 23.547614834213316

In [9]: obs.sum()
Out[9]: 235.47614834213317

In [10]: obs.min()
Out[10]: 20.232286285845483

https://risk-engineering.org/?src=pdfslide

Python as a statistical calculator: plotting

In [2]: import numpy, matplotlib.pyplot as plt

In [3]: x = numpy.linspace(0, 10, 100)

In [4]: obs = numpy.sin(x) + numpy.random.uniform(-0.1, 0.1, 100)

In [5]: plt.plot(x, obs)

In [7]: plt.plot(x, obs)

Out[5]: [<matplotlib.lines.Line2D at 0x7f47ecc96da0>]

Out[7]: [<matplotlib.lines.Line2D at 0x7f47ed42f0f0>]

https://risk-engineering.org/?src=pdfslide

Some basic notions in

probability and statistics

https://risk-engineering.org/?src=pdfslide

Discrete vs continuous variables

Discrete

A discrete variable takes separate, countable
values

Examples:

▷ outcomes of a coin toss: {head, tail}

▷ number of students in the class

▷ questionnaire responses {very unsatisfied,
unsatisfied, satisfied, very satisfied}

Continuous

A continuous variable is the result of a
measurement (a floating point number)

Examples:

▷ height of a person

▷ flow rate in a pipeline

▷ volume of oil in a drum

▷ time taken to cycle from home to
university

https://risk-engineering.org/?src=pdfslide

Random variables

A random variable is a set of possible values from a stochastic experiment

Examples:

▷ sum of the values on two dice throws (a discrete random variable)

▷ height of the water in a river at time 𝑡 (a continuous random variable)

▷ time until the failure of an electronic component

▷ number of cars on a bridge at time 𝑡

▷ number of new influenza cases at a hospital in a given month

▷ number of defective items in a batch produced by a factory

https://risk-engineering.org/?src=pdfslide

Probability Mass Functions

▷ For all values 𝑥 that a discrete random variable 𝑋 may take, we
define the function

𝑝𝑋(𝑥) ≝ Pr(𝑋 takes the value 𝑥)

▷ This is called the probability mass function (pmf) of 𝑋

▷ Example: 𝑋 = “number of heads when tossing a coin twice”
• 𝑝𝑋(0) ≝ Pr(𝑋 = 0) = 1/4

• 𝑝𝑋(1) ≝ Pr(𝑋 = 1) = 2/4

• 𝑝𝑋(2) ≝ Pr(𝑋 = 2) = 1/4

0 1 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

https://risk-engineering.org/?src=pdfslide

Probability Mass Functions: two coins

▷ Task: simulate “expected number of heads when tossing a coin twice”

▷ Let’s simulate a coin toss by random choice between 0 and 1

> numpy.random.randint(0, 2)
1

▷ Toss a coin twice:

> numpy.random.randint(0, 2, 2)
array([0, 1])

▷ Number of heads when tossing a coin twice:

> numpy.random.randint(0, 2, 2).sum()
1

inclusive lower bound exclusive upper bound

Download this content as a

Python notebook at

risk-engineering.org

https://risk-engineering.org/?src=pdfslide
https://risk-engineering.org/

Probability Mass Functions: two coins

▷ Task: simulate “expected number of heads when tossing a coin twice”

▷ Let’s simulate a coin toss by random choice between 0 and 1

> numpy.random.randint(0, 2)
1

▷ Toss a coin twice:

> numpy.random.randint(0, 2, 2)
array([0, 1])

▷ Number of heads when tossing a coin twice:

> numpy.random.randint(0, 2, 2).sum()
1

inclusive lower bound exclusive upper bound

count
Download this content as a

Python notebook at

risk-engineering.org

https://risk-engineering.org/?src=pdfslide
https://risk-engineering.org/

Probability Mass Functions: two coins

▷ Task: simulate “expected number of heads when tossing a coin twice”

▷ Let’s simulate a coin toss by random choice between 0 and 1

> numpy.random.randint(0, 2)
1

▷ Toss a coin twice:

> numpy.random.randint(0, 2, 2)
array([0, 1])

▷ Number of heads when tossing a coin twice:

> numpy.random.randint(0, 2, 2).sum()
1

inclusive lower bound exclusive upper bound

count
Download this content as a

Python notebook at

risk-engineering.org

https://risk-engineering.org/?src=pdfslide
https://risk-engineering.org/

Probability Mass Functions: two coins

▷ Task: simulate “expected number of heads when tossing a coin twice”

▷ Do this 1000 times and plot the resulting pmf:

import numpy
import matplotlib.pyplot as plt

N = 1000
heads = numpy.zeros(N, dtype=int)
for i in range(N):

second argument to randint is exclusive upper bound
heads[i] = numpy.random.randint(0, 2, 2).sum()

plt.stem(numpy.bincount(heads), use_line_collection=True)
heads[i]: element

number i of the array

heads

https://risk-engineering.org/?src=pdfslide

More information on Python programming

For more information on Python syntax, check out the
book Think Python

Purchase, or read online for free at
greenteapress.com/wp/think-python-2e/

https://risk-engineering.org/?src=pdfslide
https://greenteapress.com/wp/think-python-2e/

Probability Mass Functions: properties

▷ A pmf is always non-negative

𝑝𝑋(𝑥) ≥ 0

▷ Sum over the support equals 1

∑
𝑥

𝑝𝑋(𝑥) = 1

▷

Pr(𝑎 ≤ 𝑋 ≤ 𝑏) = ∑
𝑥∈[𝑎,𝑏]

𝑝𝑋(𝑥)

https://risk-engineering.org/?src=pdfslide

Probability Density Functions

▷ For continuous random variables, the probability density
function 𝑓𝑋(𝑥) is defined by

Pr(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫
𝑏

𝑎
𝑓𝑋(𝑥)𝑑𝑥

▷ It is non-negative

𝑓𝑋(𝑥) ≥ 0

▷ The area under the curve (integral over ℝ) is 1

∫
∞

−∞
𝑓𝑋(𝑥)𝑑𝑥 = 1

https://risk-engineering.org/?src=pdfslide

Probability Density Function

In reliability engineering, you are often concerned about
the random variable 𝑇 representing the time at which a
component fails.

The PDF 𝑓 (𝑡) is the “failure density function”. It tells you
the probability of failure around age 𝑡.

lim
Δ𝑡→0

Pr(𝑡 < 𝑇 < 𝑡 + Δ𝑡)
Δ𝑡 = lim

Δ𝑡→0

∫𝑡+Δ𝑡
𝑡 𝑓 (𝑡)𝑑𝑡

Δ𝑡 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Exponential distribution PDF

λ = 0.5

λ = 1.0

λ = 10.0

https://risk-engineering.org/?src=pdfslide

Expectation of a random variable

▷ The expectation (or mean) is defined as a weighted average of all
possible realizations of a random variable

▷ Discrete random variable:

𝔼[𝑋] = 𝜇𝑋 ≝
𝑁

∑
𝑖=1

𝑥𝑖 × Pr(𝑋 = 𝑥𝑖)

▷ Continuous random variable:

𝔼[𝑋] = 𝜇𝑋 ≝ ∫
∞

−∞
𝑢 × 𝑓 (𝑢)𝑑𝑢

▷ Interpretation:
• the center of gravity of the pmf or pdf

• the average in a large number of independent realizations of your experiment

https://risk-engineering.org/?src=pdfslide

Important concept: independence

▷ Definition of statistical independence of two events: the outcome of one
has no effect on the outcome of the other

▷ Typical example: successive coin tosses

▷ The probability of two independent events both happening is the
product of their individual probabilities

▷ Often important in safety analysis:
• if you are responsible for a car accident, your car insurance will become more

expensive, because the event indicates you are more likely to have future car
accidents (they are not independent events)

• if an accident of a specific type occurs on an industrial site, it is less likely it
will occur again the following year because people will make extra efforts to
prevent that type of accident

https://risk-engineering.org/?src=pdfslide

Illustration: expected value with coins

▷ 𝑋 = “number of heads when tossing a coin twice”

▷ pmf:
• 𝑝𝑋(0) ≝ Pr(𝑋 = 0) = 1/4

• 𝑝𝑋(1) ≝ Pr(𝑋 = 1) = 2/4

• 𝑝𝑋(2) ≝ Pr(𝑋 = 2) = 1/4

▷ 𝔼[𝑋] ≝ ∑
𝑘

𝑘 × 𝑝𝑋(𝑘) = 0 × 1
4 + 1 × 2

4 + 2 × 1
4 = 1

H
H

T

T
H

T

https://risk-engineering.org/?src=pdfslide

Illustration: expected value of a dice roll

▷ Expected value of a dice roll is
6

∑
𝑖=1

𝑖 × 1
6 = 3.5

▷ If we toss a dice a large number of times, the mean value should
converge to 3.5

▷ Let’s check that in Python

> numpy.random.randint(1, 7, 100).mean()
4.2
> numpy.random.randint(1, 7, 1000).mean()
3.478

(These numbers will be different for different executions. The greater the number of

random “dice throws” we simulate, the greater the probability that the mean will be

close to 3.5.)

https://risk-engineering.org/?src=pdfslide

Illustration: expected value of a dice roll

We can plot the speed of convergence of the mean
towards the expected value as follows.

N = 1000
roll = numpy.zeros(N)
expectation = numpy.zeros(N)
for i in range(N):

roll[i] = numpy.random.randint(1, 7)
for i in range(1, N):

expectation[i] = numpy.mean(roll[0:i])
plt.plot(expectation)

0 200 400 600 800 1000
Number of rolls

0

1

2

3

4

5

6

Ex
pe

ct
ed

 v
al

ue

Expectation of a dice roll

https://risk-engineering.org/?src=pdfslide

Mathematical properties of expectation

If 𝑐 is a constant and 𝑋 and 𝑌 are random variables, then

▷ 𝔼[𝑐] = 𝑐

▷ 𝔼[𝑐𝑋] = 𝑐𝔼[𝑋]

▷ 𝔼[𝑐 + 𝑋] = 𝑐 + 𝔼[𝑋]

▷ 𝔼[𝑋 + 𝑌] = 𝔼[𝑋] + 𝔼[𝑌]

Note: in general 𝔼[𝑔(𝑋)] ≠ 𝑔(𝔼[𝑋])

https://risk-engineering.org/?src=pdfslide

Aside: existence of expectation

▷ Not all random variables have an expectation

▷ Consider a random variable 𝑋 defined on some (infinite) sample space Ω
so that for all positive integers 𝑖, 𝑋 takes the value
• 2𝑖 with probability 2−𝑖−1

• −2𝑖 with probability 2−𝑖−1

▷ Both the positive part and the negative part of 𝑋 have infinite expectation
in this case, so 𝔼[𝑋] would have to be ∞ − ∞ (meaningless)

https://risk-engineering.org/?src=pdfslide

Variance of a random variable

▷ The variance provides a measure of the dispersion around the mean
• intuition: how “spread out” the data is

▷ For a discrete random variable:

Var(𝑋) = 𝜎2
𝑋 ≝

𝑁
∑
𝑖=1

(𝑋𝑖 − 𝜇𝑋)2 Pr(𝑋 = 𝑥𝑖)

▷ For a continuous random variable:

Var(𝑋) = 𝜎2
𝑋 ≝ ∫

∞

−∞
(𝑥 − 𝜇𝑥)2𝑓 (𝑢)𝑑𝑢

▷ In Python:
• obs.var() if obs is a NumPy vector

• numpy.var(obs) for any Python sequence (vector or list) In Excel, function VAR

https://risk-engineering.org/?src=pdfslide

Variance with coins

▷ 𝑋 = “number of heads when tossing a coin twice”

▷ pmf:
• 𝑝𝑋(0) ≝ Pr(𝑋 = 0) = 1/4

• 𝑝𝑋(1) ≝ Pr(𝑋 = 1) = 2/4

• 𝑝𝑋(2) ≝ Pr(𝑋 = 2) = 1/4

▷

Var(𝑋) ≝
𝑁

∑
𝑖=1

(𝑥𝑖 − 𝜇𝑋)2 Pr(𝑋 = 𝑥𝑖)

= 1
4 × (0 − 1)2 + 2

4 × (1 − 1)2 + 1
4 × (2 − 1)2 = 1

2

https://risk-engineering.org/?src=pdfslide

Variance of a dice roll

▷ Analytic calculation of the variance of a dice roll:

𝑉𝑎𝑟(𝑋) ≝
𝑁

∑
𝑖=1

(𝑋𝑖 − 𝜇𝑋)2 Pr(𝑋 = 𝑥𝑖)

= 1
6 × ((1 − 3.5)2 + (2 − 3.5)2 + (3 − 3.5)2 + (4 − 4.5)2 + (5 − 3.5)2 + (6 − 3.5)2)

= 2.916

▷ Let’s reproduce that in Python

> rolls = numpy.random.randint(1, 7, 1000)
> len(rolls)
1000
> rolls.var()
2.9463190000000004

count

https://risk-engineering.org/?src=pdfslide

Properties of variance as a mathematical operator

If 𝑐 is a constant and 𝑋 and 𝑌 are random variables, then

▷ Var(𝑋) ≥ 0 (variance is always non-negative)

▷ Var(𝑐) = 0

▷ Var(𝑐 + 𝑋) = Var(𝑋)

▷ Var(𝑐𝑋) = 𝑐2 Var(𝑋)

▷ Var(𝑋 + 𝑌) = Var(𝑋) + Var(𝑌), if X and Y are independent

▷ Var(𝑋 + 𝑌) = Var(𝑋) + Var(𝑌) + 2Cov(𝑋, 𝑌) if 𝑋 and 𝑌 are dependent

Note:

▷ Cov(𝑋, 𝑌) ≝ 𝔼 [(𝑋 − 𝔼[𝑋])(𝑌 − 𝔼[𝑌])]

▷ Cov(𝑋, 𝑋) = Var(𝑋)

Beware:

▷ 𝔼[𝑋2] ≠ (𝔼[𝑋])2

▷ 𝔼[√𝑋] ≠ √𝔼[𝑋]

https://risk-engineering.org/?src=pdfslide

Properties of variance as a mathematical operator

If 𝑐 is a constant and 𝑋 and 𝑌 are random variables, then

▷ Var(𝑋) ≥ 0 (variance is always non-negative)

▷ Var(𝑐) = 0

▷ Var(𝑐 + 𝑋) = Var(𝑋)

▷ Var(𝑐𝑋) = 𝑐2 Var(𝑋)

▷ Var(𝑋 + 𝑌) = Var(𝑋) + Var(𝑌), if X and Y are independent

▷ Var(𝑋 + 𝑌) = Var(𝑋) + Var(𝑌) + 2Cov(𝑋, 𝑌) if 𝑋 and 𝑌 are dependent

Note:

▷ Cov(𝑋, 𝑌) ≝ 𝔼 [(𝑋 − 𝔼[𝑋])(𝑌 − 𝔼[𝑌])]

▷ Cov(𝑋, 𝑋) = Var(𝑋)

Beware:

▷ 𝔼[𝑋2] ≠ (𝔼[𝑋])2

▷ 𝔼[√𝑋] ≠ √𝔼[𝑋]

https://risk-engineering.org/?src=pdfslide

Standard deviation

▷ Formula for variance: Var(𝑋) ≝
𝑁

∑
𝑖=1

(𝑋𝑖 − 𝜇𝑋)2 Pr(𝑋 = 𝑥𝑖)

▷ If random variable 𝑋 is expressed in metres, Var(𝑋) is in 𝑚2

▷ To obtain a measure of dispersion of a random variable around its
expected value which has the same units as the random variable itself,
take the square root

▷ Standard deviation 𝜎 ≝ √Var(𝑋)

▷ In Python:
• obs.std() if obs is a NumPy vector

• numpy.std(obs) for any Python sequence (vector or list)
In Excel, function STDEV

https://risk-engineering.org/?src=pdfslide

Properties of standard deviation

▷ Suppose 𝑌 = 𝑎𝑋 + 𝑏, where
• 𝑎 and 𝑏 are scalar

• 𝑋 and 𝑌 are two random variables

▷ Then 𝜎(𝑌) = |𝑎| 𝜎(𝑋)

▷ Let’s check that with NumPy:

> X = numpy.random.uniform(100, 200, 1000)
> a = -32
> b = 16
> Y = a * X + b
> Y.std()
914.94058476118835
> abs(a) * X.std()
914.94058476118835

https://risk-engineering.org/?src=pdfslide

Properties of expectation & variance: empirical testing with numpy
▷ 𝔼[𝑋 + 𝑌] = 𝔼[𝑋] + 𝔼[𝑌]

> X = numpy.random.randint(1, 101, 1000)
> Y = numpy.random.randint(-300, -199, 1000)
> X.mean()
50.575000000000003
> Y.mean()
-251.613
> (X + Y).mean()
-201.038

▷ Var(𝑐𝑋) = 𝑐2 Var(𝑋)

> numpy.random.randint(1, 101, 1000).var()
836.616716
> numpy.random.randint(5, 501, 1000).var()
20514.814318999997
> 5 * 5 * 836
20900

https://risk-engineering.org/?src=pdfslide

Properties of expectation & variance: empirical testing with numpy
▷ 𝔼[𝑋 + 𝑌] = 𝔼[𝑋] + 𝔼[𝑌]

> X = numpy.random.randint(1, 101, 1000)
> Y = numpy.random.randint(-300, -199, 1000)
> X.mean()
50.575000000000003
> Y.mean()
-251.613
> (X + Y).mean()
-201.038

▷ Var(𝑐𝑋) = 𝑐2 Var(𝑋)

> numpy.random.randint(1, 101, 1000).var()
836.616716
> numpy.random.randint(5, 501, 1000).var()
20514.814318999997
> 5 * 5 * 836
20900

https://risk-engineering.org/?src=pdfslide

Properties of expectation & variance: empirical testing with numpy
▷ 𝔼[𝑋 + 𝑌] = 𝔼[𝑋] + 𝔼[𝑌]

> X = numpy.random.randint(1, 101, 1000)
> Y = numpy.random.randint(-300, -199, 1000)
> X.mean()
50.575000000000003
> Y.mean()
-251.613
> (X + Y).mean()
-201.038

▷ Var(𝑐𝑋) = 𝑐2 Var(𝑋)

> numpy.random.randint(1, 101, 1000).var()
836.616716
> numpy.random.randint(5, 501, 1000).var()
20514.814318999997
> 5 * 5 * 836
20900

https://risk-engineering.org/?src=pdfslide

Cumulative Distribution Function

▷ The cumulative distribution function (cdf) of random variable 𝑋, denoted
by 𝐹𝑋(𝑥), indicates the probability that 𝑋 assumes a value ≤ 𝑥, where 𝑥 is
any real number

𝐹𝑋(𝑥) = Pr(𝑋 ≤ 𝑥) − ∞ ≤ 𝑥 ≤ ∞

▷ Properties of a cdf:
• 𝐹𝑋(𝑥) is a non-decreasing function of 𝑥

• 0 ≤ 𝐹𝑋(𝑥) ≤ 1

• lim𝑥→∞ 𝐹𝑋(𝑥) = 1

• lim𝑥→­∞ 𝐹𝑋(𝑥) = 0

• if 𝑥 ≤ 𝑦 then 𝐹𝑋(𝑥) ≤ 𝐹𝑋(𝑦)

• Pr(𝑎 < 𝑋 ≤ 𝑏) = 𝐹𝑋(𝑏) − 𝐹𝑋(𝑎) ∀𝑏 > 𝑎

https://risk-engineering.org/?src=pdfslide

CDF of a discrete distribution

𝐹𝑋(𝑥) = Pr(𝑋 ≤ 𝑥) − ∞ ≤ 𝑥 ≤ ∞

= ∑
𝑥𝑖≤𝑥

Pr(𝑋 = 𝑥𝑖)

The CDF is built by accumulating probability as 𝑥
increases.

Consider the random variable 𝑋 = “number of heads when
tossing a coin twice”.

𝑥 0 1 2

PMF, 𝑝𝑋(𝑥) = Pr(𝑋 = 𝑥) 1/4 2/4 1/4

CDF, 𝐹𝑋(𝑥) = Pr(𝑋 ≤ 𝑥) 1/4 3/4 1

0 1 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Heads from two coin tosses: PMF

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Heads from two coin tosses: CDF

https://risk-engineering.org/?src=pdfslide

CDF of a discrete distribution

𝐹𝑋(𝑥) = Pr(𝑋 ≤ 𝑥) − ∞ ≤ 𝑥 ≤ ∞

= ∑
𝑥𝑖≤𝑥

Pr(𝑋 = 𝑥𝑖)

Example: sum of two dice

0 2 4 6 8 10 12
0.000

0.025

0.050

0.075

0.100

0.125

0.150

Sum of two dice: PMF

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

Sum of two dice: CDF

https://risk-engineering.org/?src=pdfslide

CDF of a continuous distribution

𝐹𝑋(𝑥) = Pr(𝑋 ≤ 𝑥)

= ∫
𝑥

−∞
𝑓 (𝑢)𝑑𝑢

Python: scipy.stats.norm(loc=mu, scale=sigma).pdf(x)

Python: scipy.stats.norm(loc=mu, scale=sigma).cdf(x)

https://risk-engineering.org/?src=pdfslide

Interpreting the CDF

In reliability engineering, we are often
interested in the random variable 𝑇
representing time to failure of a component.

The cumulative distribution function tells you
the probability that lifetime is ≤ 𝑡.

𝐹(𝑡) = Pr(𝑇 ≤ 𝑡) Time to failure (T)
0

1

Pr
ob

ab
ili

ty
 F

(t
)

t

P(T ≤ t)

https://risk-engineering.org/?src=pdfslide

Exercise

Problem

Field data tells us that the time to failure of a pump, 𝑋, is normally distributed.
The mean and standard deviation of the time to failure are estimated from
historical data as μ = 3200 hours and σ = 600 hours.

What is the probability that a pump will fail before 2000 hours of operation?

Solution

We are interested in calculating Pr(𝑋 ≤ 2000) and we know that 𝑋 follows a
norm(3200, 600) distribution. We can use the CDF to calculate Pr(𝑋 ≤
2000).

We want norm(3200, 600).cdf(2000), which is 0.022750 (or 2.28%).

https://risk-engineering.org/?src=pdfslide

Exercise

Problem

Field data tells us that the time to failure of a pump, 𝑋, is normally distributed.
The mean and standard deviation of the time to failure are estimated from
historical data as μ = 3200 hours and σ = 600 hours.

What is the probability that a pump will fail before 2000 hours of operation?

Solution

We are interested in calculating Pr(𝑋 ≤ 2000) and we know that 𝑋 follows a
norm(3200, 600) distribution. We can use the CDF to calculate Pr(𝑋 ≤
2000).

We want norm(3200, 600).cdf(2000), which is 0.022750 (or 2.28%).

https://risk-engineering.org/?src=pdfslide

Exercise

Problem

Field data tells us that the time to failure of a pump, 𝑋, is normally distributed.
The mean and standard deviation of the time to failure are estimated from
historical data as μ = 3200 hours and σ = 600 hours.

What is the probability that a pump will fail after it has worked for at least
2000 hours?

Solution

We are interested in calculating Pr(𝑋 > 2000) and we know that 𝑋 follows a
norm(3200, 600) distribution. We know that Pr(𝑋 > 2000) = 1 − Pr(𝑋 ≤
2000).

We want 1 - norm(3200, 600).cdf(2000), which is 0.977 (or 97.7%).

https://risk-engineering.org/?src=pdfslide

Exercise

Problem

Field data tells us that the time to failure of a pump, 𝑋, is normally distributed.
The mean and standard deviation of the time to failure are estimated from
historical data as μ = 3200 hours and σ = 600 hours.

What is the probability that a pump will fail after it has worked for at least
2000 hours?

Solution

We are interested in calculating Pr(𝑋 > 2000) and we know that 𝑋 follows a
norm(3200, 600) distribution. We know that Pr(𝑋 > 2000) = 1 − Pr(𝑋 ≤
2000).

We want 1 - norm(3200, 600).cdf(2000), which is 0.977 (or 97.7%).

https://risk-engineering.org/?src=pdfslide

The quantile function

The quantile function is the inverse of the cdf.

The median is the point where half the
population is below and half is above (it’s the
0.5 quantile, and the 50th percentile).

Consider a normal distribution centered in 120
with a standard deviation of 20.

> import scipy.stats
> distrib = scipy.stats.norm(120, 20)
> distrib.ppf(0.5)
120.0
> distrib.cdf(120.0)
0.5

https://risk-engineering.org/?src=pdfslide

Quantile measures

A quantile measure is a cutpoint in the
probability distribution indicating the value
below which a given percentage of the sample
falls.

The 0.05 quantile is the 𝑥 value which has 5% of
the sample smaller than 𝑥.

It’s also called the 5th percentile.
The 0.05 quantile of the standard normal distribution
(centered in 0, standard deviation of 1)

import scipy.stats
scipy.stats.norm(0, 1).ppf(0.05)
-1.6448536269514729

https://risk-engineering.org/?src=pdfslide

Quantile measures

Quantile measures are often used in health.

To the right, illustration of the range of baby
heights and weights as a function of their age.

Image source: US CDC

https://risk-engineering.org/?src=pdfslide

Quantile measures in risk analysis

Risk analysis and reliability engineering: analysts are
interested in the probability of extreme events
▷ what is the probability of a flood higher than my dike?

▷ how high do I need to build a dike to protect against
hundred-year floods?

▷ what is the probability of a leak given the corrosion
measurements I have made?

Problem: these are rare events so it’s difficult to obtain
confidence that a model representing the underlying
mechanism works well for extremes

Three percentile measures (95% = green, 99% =
blue, 99.99% = red) of the spatial risk of fallback
from a rocket launcher. Dotted lines indicate
uncertainty range.

Image source: aerospacelab-journal.org/sites/www.aerospacelab-journal.org/files/AL04-13_0.pdf

https://risk-engineering.org/?src=pdfslide

Quantiles and confidence intervals

A 90% confidence interval is the set of points
between the 0.05 quantile (5% of my
observations are smaller than this value) and
the 0.95 quantile (5% of my observations are
larger than this value).

In the example to the right, the 90% confidence
interval is [87.1, 152.9].

https://risk-engineering.org/?src=pdfslide

Scipy.stats package

▷ The scipy.stats module implements many
continuous and discrete random variables and their
associated distributions
• binomial, poisson, exponential, normal, uniform,
weibull…

▷ Usage: instantiate a distribution then call a method
• rvs: random variates

• pdf: Probability Density Function

• cdf: Cumulative Distribution Function

• sf: Survival Function (1-cdf)

• ppf: Percent Point Function (inverse of cdf)

• isf: Inverse Survival Function (inverse of sf)

https://risk-engineering.org/?src=pdfslide

Simulating dice throws

▷ Maximum of 1000 throws

> dice = scipy.stats.randint(1, 7)
> dice.rvs(1000).max()
6

▷ What is the probability of a die rolling 4?

> dice.pmf(4)
0.16666666666666666

▷ What is the probability of rolling 4 or below?

> dice.cdf(4)
0.66666666666666663

▷ What is the probability of rolling between 2 and 4 (inclusive)?

> dice.cdf(4) - dice.cdf(1)
0.5

exclusive upper
bound

https://risk-engineering.org/?src=pdfslide

Simulating dice

> import numpy
> import matplotlib.pyplot as plt

> toss = numpy.random.choice(range(1, 7))
> toss
2
> N = 10000
> tosses = numpy.random.choice(range(1, 7), N)
> tosses
array([6, 6, 4, ..., 2, 4, 5])
> tosses.mean()
3.5088
> numpy.median(tosses)
4.0
> len(numpy.where(tosses > 3)[0]) / float(N)
0.5041
> x, y = numpy.unique(tosses, return_counts=True)
> plt.stem(x, y/float(N))

1 2 3 4 5 6

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

https://risk-engineering.org/?src=pdfslide

Scipy.stats examples

▷ Generate 5 random variates from a
continuous uniform distribution between 90
and 100

▷ Check that the expected value of the
distribution is around 95

▷ Check that around 20% of variates are less
than 92

> import scipy.stats

> u = scipy.stats.uniform(90, 10)
> u.rvs(5)
array([94.0970853 , 92.41951494,
90.25127254, 91.69097729,
96.1811148])

> u.rvs(1000).mean()
94.892801456986376
> (u.rvs(1000) < 92).sum() / 1000.0
0.193

https://risk-engineering.org/?src=pdfslide

Some

important

probability

distributions

Some important probability distributions

Coin tossing with uneven coin Bernoulli scipy.stats.bernoulli

Rolling a dice uniform scipy.stats.randint

Counting errors/successes Binomial scipy.stats.binom

Trying until success geometric scipy.stats.geom

Countable, rare events whose occurrence is independent Poisson scipy.stats.poisson

Random “noise”, sums of many variables normal scipy.stats.norm

https://risk-engineering.org/?src=pdfslide

Bernoulli trials

▷ A trial is an experiment which can be repeated many times with
the same probabilities, each realization being independent of the
others

▷ Bernoulli trial: an experiment in which 𝑁 trials are made of an
event, with probability 𝑝 of “success” in any given trial and
probability 1 − 𝑝 of “failure”
• “success” and “failure” are mutually exclusive

• example: sequence of coin tosses

• example: arrival of requests in a web server per time slot

Jakob Bernoulli (1654–1705)

https://risk-engineering.org/?src=pdfslide

The geometric distribution (trying until success)

▷ We conduct a sequence of Bernoulli trials, each with success
probability 𝑝

▷ What’s the probability that it takes 𝑘 trials to get a success?
• Before we can succeed at trial 𝑘, we must have had 𝑘 − 1 failures

• Each failure occurred with probability 1 − 𝑝, so total probability
(1 − 𝑝)𝑘−1

• Then a single success with probability 𝑝

▷ Pr(𝑋 = 𝑘) = (1 − 𝑝)𝑘−1𝑝

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30
Geometric distribution PMF, p=0.3

https://risk-engineering.org/?src=pdfslide

The geometric distribution: intuition

▷ Suppose I am at a party and I start asking girls to dance. Let 𝑋 be the number
of girls that I need to ask in order to find a partner.
• If the first girl accepts, then 𝑋 = 1

• If the first girl declines but the next girl accepts, then 𝑋 = 2

▷ 𝑋 = 𝑘 means that I failed on the first 𝑘 − 1 tries and succeeded on the 𝑘th try
• My probability of failing on the first try is (1 − 𝑝)

• My probability of failing on the first two tries is (1 − 𝑝)(1 − 𝑝)

• My probability of failing on the first 𝑛 − 1 tries is (1 − 𝑝)𝑘−1

• Then, my probability of succeeding on the nth try is 𝑝

▷ Properties:
• 𝔼[𝑋] = 1

𝑝

• Var(𝑋) = 1−𝑝
𝑝2

https://risk-engineering.org/?src=pdfslide

The binomial distribution (counting successes)

▷ Also arises when observing multiple Bernoulli trials
• exactly two mutually exclusive outcomes, “success” and “failure”

▷ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝, 𝑘, 𝑛): probability of observing 𝑘 successes in 𝑛 trials,
where probability of success on a single trial is 𝑝
• example: toss a coin 𝑛 times (𝑝 = 0.5) and see 𝑘 heads

▷ We have 𝑘 successes, which happens with a probability of 𝑝𝑘

▷ We have 𝑛 − 𝑘 failures, which happens with probability (1 − 𝑝)𝑛−𝑘

▷ We can generate these 𝑘 successes in many different ways from
𝑛 trials, (𝑛

𝑘) ways

▷ Pr(𝑋 = 𝑘) = (𝑛
𝑘)(1 − 𝑝)𝑛−𝑘𝑝𝑘

0 5 10 15 20
0.00

0.05

0.10

0.15

Binomial distribution PMF, n=20, p=0.3

Reminder: binomial
coefficient (𝑛

𝑘) is 𝑛!
𝑘!(𝑛−𝑘)!

https://risk-engineering.org/?src=pdfslide

Binomial distribution: application

▷ Consider a medical test with an error rate of
0.1 applied to 100 patients

▷ What is the probability that we see at most 1
test error?

▷ What is the probability that we see at most
10 errors?

▷ If the random variable 𝑋 represents the
number of test errors, what is the smallest 𝑘
such that 𝑃(𝑋 ≤ 𝑘) is at least 0.05?

> import scipy.stats

> test = scipy.stats.binom(n=100, p=0.1)
> test.cdf(1)
0.00032168805319411544
> test.cdf(10)
0.58315551226649232
> test.ppf(0.05)
5.0

When reporting results, make sure you pay

attention to the number of significant figure
s

in the input data (2 in this case).

https://risk-engineering.org/?src=pdfslide

Binomial distribution: application

Q: A company drills 9 oil exploration wells, each with a 10% chance of success. Eight
of the nine wells fail. What is the probability of that happening?

Analytic solution

Each well is a binomial trial with 𝑝 = 0.1. We want
the probability of exactly one success.

> import scipy.stats
> wells = scipy.stats.binom(n=9, p=0.1)
> wells.pmf(1)
0.38742048899999959

Answer by simulation

Run 20 000 trials of the model and count the
number that generate 1 positive result.

> import scipy.stats
> N = 20_000
> wells = scipy.stats.binom(n=9, p=0.1)
> trials = wells.rvs(N)
> (trials == 1).sum() / float(N)
0.38679999999999998

The probability of all 9 wells failing is 0.99 = 0.3874 (and also wells.pmf(0)).

The probability of at least 8 wells failing is wells.cdf(1). It’s also wells.pmf(0) +
wells.pmf(1) (it’s 0.7748).

https://risk-engineering.org/?src=pdfslide

Binomial distribution: application

Q: A company drills 9 oil exploration wells, each with a 10% chance of success. Eight
of the nine wells fail. What is the probability of that happening?

Analytic solution

Each well is a binomial trial with 𝑝 = 0.1. We want
the probability of exactly one success.

> import scipy.stats
> wells = scipy.stats.binom(n=9, p=0.1)
> wells.pmf(1)
0.38742048899999959

Answer by simulation

Run 20 000 trials of the model and count the
number that generate 1 positive result.

> import scipy.stats
> N = 20_000
> wells = scipy.stats.binom(n=9, p=0.1)
> trials = wells.rvs(N)
> (trials == 1).sum() / float(N)
0.38679999999999998

The probability of all 9 wells failing is 0.99 = 0.3874 (and also wells.pmf(0)).

The probability of at least 8 wells failing is wells.cdf(1). It’s also wells.pmf(0) +
wells.pmf(1) (it’s 0.7748).

https://risk-engineering.org/?src=pdfslide

Binomial distribution: application

Q: A company drills 9 oil exploration wells, each with a 10% chance of success. Eight
of the nine wells fail. What is the probability of that happening?

Analytic solution

Each well is a binomial trial with 𝑝 = 0.1. We want
the probability of exactly one success.

> import scipy.stats
> wells = scipy.stats.binom(n=9, p=0.1)
> wells.pmf(1)
0.38742048899999959

Answer by simulation

Run 20 000 trials of the model and count the
number that generate 1 positive result.

> import scipy.stats
> N = 20_000
> wells = scipy.stats.binom(n=9, p=0.1)
> trials = wells.rvs(N)
> (trials == 1).sum() / float(N)
0.38679999999999998

The probability of all 9 wells failing is 0.99 = 0.3874 (and also wells.pmf(0)).

The probability of at least 8 wells failing is wells.cdf(1). It’s also wells.pmf(0) +
wells.pmf(1) (it’s 0.7748).

https://risk-engineering.org/?src=pdfslide

Binomial distribution: properties

Exercise: check empirically (with SciPy) the following properties
of the binomial distribution:

▷ the mean of the distribution (𝜇𝑥) is equal to 𝑛 × 𝑝

▷ the variance (𝜎2
𝑋) is 𝑛 × 𝑝 × (1 − 𝑝)

▷ the standard deviation (𝜎𝑥) is √𝑛 × 𝑝 × (1 − 𝑝)

https://risk-engineering.org/?src=pdfslide

Gaussian (normal) distribution

▷ The famous “bell shaped” curve, fully described by its mean and
standard deviation

▷ Good representation of distribution of measurement errors and
many population characteristics
• size, mechanical strength, duration, speed

▷ Symmetric around the mean

▷ Mean = median = mode

▷ Python: scipy.stats.norm(μ, σ)

▷ Excel: NORMINV(RAND(), μ, σ)

https://risk-engineering.org/?src=pdfslide

Scipy.stats examples

▷ Consider a Gaussian distribution centered in
5, standard deviation of 1

▷ Check that half the distribution is located to
the left of 5

▷ Find the first percentile (value of 𝑥 which has
1% of realizations to the left)

▷ Check that it is equal to the 99% survival
quantile

> dist = scipy.stats.norm(5, 1)
> dist.cdf(5)
0.5
> dist.ppf(0.5)
5.0
> dist.ppf(0.01)
2.6736521259591592
> dist.isf(0.99)
2.6736521259591592
> dist.cdf(2.67)
0.0099030755591642452

https://risk-engineering.org/?src=pdfslide

Area under the normal distribution

In [1]: import numpy

In [2]: from scipy.stats import norm

In [3]: norm.ppf(0.5)
Out[3]: 0.0

In [4]: norm.cdf(0)
Out[4]: 0.5

In [5]: norm.cdf(2) - norm.cdf(-2)
Out[5]: 0.95449973610364158

In [6]: norm.cdf(3) - norm.cdf(-3)
Out[6]: 0.99730020393673979

quantile function

there is a 95% chance that
the number drawn falls within
2 standard deviations of the mean

−4 −3 −2 −1 0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

−4 −3 −2 −1 0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

In prehistoric times, statistics textbooks c
ontained large tables

of quantile values for the normal distribution. With cheap

computing power, no longer necessary!

https://risk-engineering.org/?src=pdfslide

The “68–95–99.7 rule”

▷ The 68–95–99.7 rule (aka the three-sigma rule)
states that if 𝑥 is an observation from a normally
distributed random variable with mean μ and
standard deviation σ, then
• Pr(𝜇 − 𝜎 ≤ 𝑥 ≤ 𝜇 + 𝜎) ≈ 0.6827

• Pr(𝜇 − 2𝜎 ≤ 𝑥 ≤ 𝜇 + 2𝜎) ≈ 0.9545

• Pr(𝜇 − 3𝜎 ≤ 𝑥 ≤ 𝜇 + 3𝜎) ≈ 0.9973

▷ The 6σ quality management method pioneered by
Motorola aims for 99.99966% of production to
meet quality standards
• 3.4 defective parts per million opportunities (dpmo)

• actually, that’s only 4.5 sigma!

• (scipy.stats.norm.cdf(6) -
scipy.stats.norm.cdf(-6)) * 100→

99.999999802682453

Image source: Wikipedia on 68–95–99.7 rule

https://risk-engineering.org/?src=pdfslide

Central limit theorem

▷ Theorem states that the mean (also true of the sum) of a set of
random measurements will tend to a normal distribution, no
matter the shape of the original measurement distribution

▷ Part of the reason for the ubiquity of the normal distribution in
science

▷ Python simulation:

N = 10_000
sim = numpy.zeros(N)
for i in range(N):

sim[i] = numpy.random.uniform(30, 40, 100).mean()
plt.hist(sim, bins=20, alpha=0.5, density=True)

▷ Exercise: try this with other probability distributions and
check that the simulations tend towards a normal distribution

34.0 34.5 35.0 35.5 36.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

https://risk-engineering.org/?src=pdfslide

Galton board

▷ The Galton board (or “bean machine”) has two parts:
• top: evenly-spaced pegs in staggered rows

• bottom: evenly-spaced rectangular slots

▷ Balls introduced at the top bounce of the pegs, equal probability
of going right or left at each successive row
• each vertical step is a Bernoulli trial

▷ Balls collect in the slots at the bottom with heights following a
binomial distribution
• and for large number of balls, a normal distribution

▷ Interactive applet emulating a Galton board:
→ randomservices.org/random/apps/GaltonBoardGame.html

Named after English

psychometrician Sir Francis

Galton (1822–1911)

https://risk-engineering.org/?src=pdfslide
https://www.randomservices.org/random/apps/GaltonBoardGame.html

Exponential distribution

▷ pdf: 𝑓𝑍(𝑧) = 𝜆𝑒−𝜆𝑧, 𝑧 ≥ 0

▷ cdf: Pr(𝑍 ≤ 𝑧) = 𝐹𝑍(𝑧) = 1 − 𝑒−𝜆𝑧

▷ The hazard function, or failure rate, is constant, equal to λ
• 1/λ is the “mean time between failures”, or mtbf

• λ can be calculated by total number of failures
total operating time

▷ Often used in reliability engineering to represent failure of
electronic equipment (no wear)

▷ Property: expected value of exponential random variable is 1
𝜆

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Exponential distribution PDF

λ = 0.5

λ = 1.0

λ = 10.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0 Exponential distribution CDF
λ = 0.5

λ = 1.0

λ = 10.0

https://risk-engineering.org/?src=pdfslide

Exponential distribution

Let’s check that the expected value of
an exponential random variable is 1

𝜆

> import scipy.stats
> lda = 25
> dist = scipy.stats.expon(scale=1/float(lda))
> obs = dist.rvs(size=1000)
> obs.mean()
0.041137615318791773
> obs.std()
0.03915081431615041
> 1/float(lda)
0.04

https://risk-engineering.org/?src=pdfslide

Exponential distribution: memoryless property

▷ An exponentially distributed random variable 𝑇 obeys

Pr(𝑇 > 𝑠 + 𝑡 ∣ 𝑇 > 𝑠) = Pr(𝑇 > 𝑡), ∀𝑠, 𝑡 ≥ 0

where the vertical bar | indicates a conditional probability.

▷ Interpretation: if 𝑇 represents time of failure
• The distribution of the remaining lifetime does not depend on how long the

component has been operating (item is “as good as new”)

• Distribution of remaining lifetime is the same as the original lifetime

• An observed failure is the result of some suddenly appearing failure, not due to
gradual deterioration

https://risk-engineering.org/?src=pdfslide

Failure of power transistors (1/2)

▷ Suppose we are studying the reliability of a power system, which fails if
any of 3 power transistors fails

▷ Let 𝑋, 𝑌, 𝑍 be random variables modelling failure time of each transistor
(in hours)
• transistors have no physical wear, so model by exponential random variables

• failures are assumed to be independent

▷ 𝑋 ∼ 𝐸𝑥𝑝(1/5000) (mean failure time of 5000 hours)

▷ 𝑌 ∼ 𝐸𝑥𝑝(1/8000) (mean failure time of 8000 hours)

▷ 𝑍 ∼ 𝐸𝑥𝑝(1/4000) (mean failure time of 4000 hours)

https://risk-engineering.org/?src=pdfslide

Failure of power transistors (2/2)

▷ System fails if any transistor fails, so time to failure 𝑇 is min(𝑋, 𝑌, 𝑍)

Pr(𝑇 ≤ 𝑡) = 1 − Pr(𝑇 > 𝑡)

= 1 − Pr(min(𝑋, 𝑌, 𝑍) > 𝑡)

= 1 − Pr(𝑋 > 𝑡, 𝑌 > 𝑡, 𝑍 > 𝑡)

= 1 − Pr(𝑋 > 𝑡) × Pr(𝑌 > 𝑡) × Pr(𝑍 > 𝑡) (independence)

= 1 − (1 − Pr(𝑋 ≤ 𝑡)) (1 − Pr(𝑌 ≤ 𝑡)) (1 − Pr(𝑍 ≤ 𝑡))

= 1 − (1 − (1 − 𝑒−𝑡/5000)) (1 − (1 − 𝑒−𝑡/8000)) (1 − (1 − 𝑒−𝑡/4000)) (exponential CDF)

= 1 − 𝑒−𝑡/5000𝑒−𝑡/8000𝑒−𝑡/4000

= 1 − 𝑒−𝑡(1/5000+1/8000+1/4000)

= 1 − 𝑒−0.000575𝑡

▷ System failure time is also exponentially distributed, with parameter 0.000575

▷ Expected time to system failure is 1/0.000575 = 1739 hours

https://risk-engineering.org/?src=pdfslide

Poisson process:

exponential

arrival times

▷ A Poisson process is any process where independent events occur at
a constant average rate
• time between each pair of consecutive events follows an exponential

distribution with parameter λ (the arrival rate)

• each of these inter-arrival times is assumed to be independent of other
inter-arrival times

• example: babies are born at a hospital at a rate of five per hour

▷ The process is memoryless: number of arrivals in any bounded
interval of time after time 𝑡 is independent of the number of arrivals
before 𝑡

▷ Good model for many types of phenomena:
• number of road crashes in a zone

• number of faulty items in a production batch

• arrival of customers in a queue

• occurrence of earthquakes

https://risk-engineering.org/?src=pdfslide

The Poisson distribution

▷ The probability distribution of the counting process
associated with a Poisson process
• the number of events of the Poisson process over a time

interval

▷ Probability mass function:

Pr(𝑍 = 𝑘) = 𝜆𝑘𝑒−𝜆

𝑘! , 𝑘 = 0, 1, 2…

▷ The parameter λ is called the intensity of the Poisson
distribution
• increasing λ adds more probability to larger values

▷ Python: scipy.stats.poisson(λ)

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

Poisson distribution PMF, λ = 3

0 5 10 15 20
0.000

0.025

0.050

0.075

0.100

0.125

0.150

Poisson distribution PMF, λ = 6

0 5 10 15 20
0.00

0.02

0.04

0.06

0.08

0.10

Poisson distribution PMF, λ = 12

https://risk-engineering.org/?src=pdfslide

Poisson distribution and Prussian horses

▷ Number of fatalities for the Prussian cavalry resulting from
being kicked by a horse was recorded over a period of 20 years
• for 10 army corps, so total number of observations is 200

Deaths Occurrences
0 109
1 65
2 22
3 3
4 1
> 4 0

▷ It follows a Poisson distribution

▷ Exercise: reproduce the plot on the right which shows a fit
between a Poisson distribution and the historical data

0 1 2 3 4
0

20

40

60

80

100

120

N
um

be
r

of
 d

ea
th

s
fr

om
 h

or
se

 k
ic

ks
 (p

er
 c

or
ps

 p
er

 y
ea

r)

Prussian army deaths from horse kicks
Poisson fit
Observed

https://risk-engineering.org/?src=pdfslide

The Poisson distribution: properties

▷ Expected value of the Poisson distribution is equal to its parameter μ

▷ Variance of the Poisson distribution is equal to its parameter μ

▷ The sum of independent Poisson random variables is also Poisson

▷ Specifically, if 𝑌1 and 𝑌2 are independent with 𝑌𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖) for 𝑖 = 1, 2
then 𝑌1 + 𝑌2 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇1 + 𝜇2)

▷ Exercise: test these properties empirically with Python

Notation: ∼ means “follows

in distribution”

https://risk-engineering.org/?src=pdfslide

Simulating earthquake occurrences (1/2)

▷ Suppose we live in an area where there are
typically 0.03 earthquakes of intensity 5 or
more per year

▷ Assume earthquake arrival is a Poisson
process
• interval between earthquakes follows an

exponential distribution

• events are independent

▷ Simulate the random intervals between the
next earthquakes of intensity 5 or greater

▷ What is the 25th percentile of the interval
between 5+ earthquakes?

> from scipy.stats import expon

> expon(scale=1/0.03).rvs(size=15)
array([23.23763551, 28.73209684, 29.7729332,

46.66320369, 4.03328973, 84.03262547,
42.22440297, 14.14994806, 29.90516283,
87.07194806, 11.25694683, 15.08286603,
35.72159516, 44.70480237, 44.67294338])

> expon(scale=1/0.03).ppf(0.25)
9.5894024150593644
answer is “around 10 years”

https://risk-engineering.org/?src=pdfslide

Simulating earthquake occurrences (2/2)

▷ Worldwide: 144 earthquakes of magnitude 6 or greater
in 2013 (one every 60.8 hours on average)

▷ Rate: λ = 1
60.8 per hour

▷ What’s the probability that an earthquake of
magnitude 6 or greater will occur (worldwide) in the
next day?
• right: plot of the cdf of the corresponding exponential

distribution

• scipy.stats.expon(scale=60.8).cdf(24) =
0.326

Earthquake locations

0 50 100 150 200 250
Elapsed time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
 o

f a
n

ea
rt

hq
ua

ke

Data source: earthquake.usgs.gov/earthquakes/search/

https://risk-engineering.org/?src=pdfslide
https://earthquake.usgs.gov/earthquakes/search/

Weibull distribution

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6
Weibull distribution PDF

k=0.5, λ=1

k=1.0, λ=1

k=2.0, λ=1

k=2.0, λ=2

▷ Very flexible distribution, can model left-skewed, right-skewed, and
symmetric data

▷ Widely used for modeling reliability data

▷ Python: scipy.stats.dweibull(k, 𝜇, 𝜆)

https://risk-engineering.org/?src=pdfslide

Weibull distribution

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6
Weibull distribution PDF

k=0.5, λ=1

k=1.0, λ=1

k=2.0, λ=1

k=2.0, λ=2

▷ 𝑘 < 1: the failure rate decreases over time
• significant “infant mortality”

• defective items failing early and being weeded out of the population

▷ 𝑘 = 1: the failure rate is constant over time (equivalent to an
exponential distribution)
• suggests random external events are causing failure

▷ 𝑘 > 1: the failure rate increases with time
• “aging” process causes parts to be more likely to fail as time goes on

https://risk-engineering.org/?src=pdfslide

Student’s t distribution

−4 −2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
Student’s t distribution PDF

t(k=∞)

t(k=2.0)

t(k=1.0)

t(k=0.5)

▷ Symmetric and bell-shaped like the normal distribution, but
with heavier tails

▷ As the number of degrees of freedom 𝑑𝑓 grows, the t-distribution
approaches the normal distribution with mean 0 and variance 1

▷ Python: scipy.stats.t(df)

▷ First used by W. S. Gosset (aka Mr Student, 1876-1937), for
quality control at Guinness breweries

https://risk-engineering.org/?src=pdfslide

Distribution choice flowchart

Source of this useful flowchart is uncertain, possibly it is due to Aswath Damodaran, NYU

https://risk-engineering.org/?src=pdfslide
http://people.stern.nyu.edu/adamodar/

Image credits

▷ Dice on slide 39, flic.kr/p/9SJ5g, CC BY-NC-ND licence

▷ Galton board on slide 57: Wikimedia Commons, CC BY-SA licence

▷ Transistor on slide 61: flic.kr/p/4d4XSj, CC BY licence)

▷ Photo of Mr Gosset (aka Mr Student) on slide 72 from Wikimedia Commons,
public domain

▷ Microscope on slide 73 adapted from flic.kr/p/aeh1J5, CC BY licence

For more free content on risk engineering,
visit risk-engineering.org

https://risk-engineering.org/?src=pdfslide
https://risk-engineering.org/?src=pdfslide

Further reading

▷ SciPy lecture notes: scipy-lectures.org

▷ Book Statistics done wrong, available online at
statisticsdonewrong.com

▷ A gallery of interesting Python notebooks:
github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-

Jupyter-Notebooks

For more free content on risk engineering,
visit risk-engineering.org

https://risk-engineering.org/?src=pdfslide
https://scipy-lectures.org/
https://www.statisticsdonewrong.com/
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://risk-engineering.org/?src=pdfslide

Feedback welcome!

Was some of the content unclear? Which parts were most useful to
you? Your comments to feedback@risk-engineering.org
(email) or @LearnRiskEng (Twitter) will help us to improve these
materials. Thanks!

@LearnRiskEng

fb.me/RiskEngineering

This presentation is distributed under the terms of the
Creative Commons Attribution – Share Alike licence

For more free content on risk engineering,
visit risk-engineering.org

https://risk-engineering.org/?src=pdfslide
https://www.facebook.com/RiskEngineering
https://en.unesco.org/themes/building-knowledge-societies/oer
https://risk-engineering.org/?src=pdfslide

	Some distributions

