

Statistics and risk modelling using Python

Eric Marsden

<eric.marsden@risk-engineering.org>

Statistics is the science of learning from experience, particularly experience that arrives a little bit at a time.

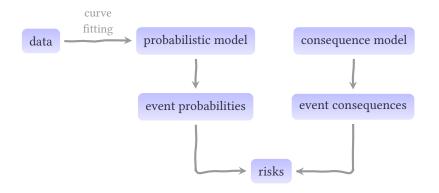
- B. Efron, Stanford

Learning objectives

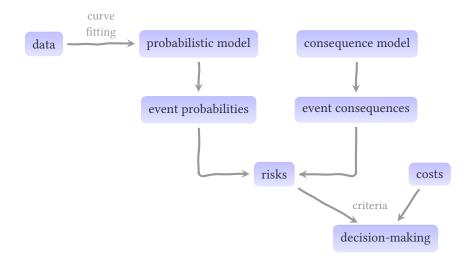
Using Python/SciPy tools:

- Analyze data using descriptive statistics and graphical tools
- **I** Fit a probability distribution to data (estimate distribution parameters)
- 3 Express various risk measures as statistical tests
- Determine quantile measures of various risk metrics
- Build flexible models to allow estimation of quantities of interest and associated uncertainty measures
- Select appropriate distributions of random variables/vectors for stochastic phenomena

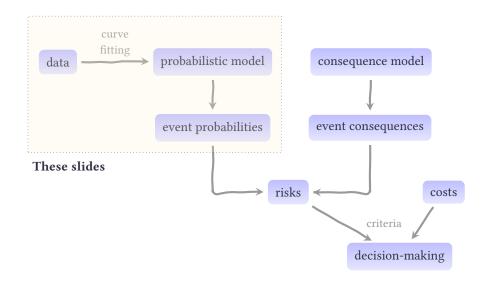
Where does this fit into risk engineering?



Where does this fit into risk engineering?



Where does this fit into risk engineering?



Angle of attack: computational approach to statistics

- ▷ Emphasize practical results rather than formulæ and proofs
- ▷ Include new statistical tools which have become practical thanks to power of modern computers
 - "resampling" methods, "Monte Carlo" methods
- ▷ Our target: "Analyze risk-related data using computers"
- ▷ If talking to a recruiter, use the term **data science**
 - very sought-after skill in 2019!

Harvard Business Review

ARTWORK: TAHAR COHEH, ANDREW J BUBOLTZ, 2011, SILK SCR ON A PAGE FROM A HIGH SCHOOL YEARBOOK, 8.5⁴ X12⁴

Big Data: The Management Revolution

5 Essential Principles for Understanding

WHAT TO READ NEXT

Data Scientists Don't Scale

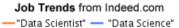
Analytics

DATA

Data Scientist: The Sexiest Job of the 21st Century

by Thomas H. Davenport and D.J. Patil

A sought-after skill





Source: indeed.com/jobtrends

A long history

R. S. S. S. S.		THE TABLE OF	GASDALTIES
The second second			1630 1634 1648 1652 1656 1649 11 20 1651 1652 1656 1649 1649
Abortive, and ftilborn 3 Aged 9	335 329 327 351 916 835 889 696	389 381 384 433 483 419 463 467 421	1 544 499 439 410 445 500 475 507 523 1793 2005 1342 1587 1832 1247 91095 579 712 661 671 70 623 794 714 2475 2814 3330 3452 3680, 3377 11757
Ague, and Feveri 120	00 004 751 970	1038 1212 1282 1371 689 875 000 1800 2303	32148 9501091 1115 1108 953 279 1622 2360 4418 6235 2865 4002 4362 4070 22284
Apoplex, and fodainly Bleach	00 74 04 74	106 111 118 86 91 102 113 138 91	1 67 22 36 17 2 35 26 75 85 280 421 445 177 1300 15
Blafted	4 1	6 6 4 5 5	3 8 13 8 10 13 6 4 4 54 14 5 12 14 16 99
Bleeding Bloudy Flux, Scouring, and Flux I	155 176 802 289	833 762 200 386 168 368 362 233 340	
Burnt, and Scalded	3 6 10 5	11 8 5 7 10 5 7 4	0 0 3 10 7 5 ¹ 3 12 3 25 19 24 31 26 19 125
Cancer, Gangrene, and Fiftula	26 29 31 19	31 53 36 37 73 31 24 35 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Wolf Canker, Sore-mouth, and Thrufh	66 28 54 42	68 51 33 72 44 81 19 27 73	3 68 6 4 4 1 1 5 74 15 79 190 244 161 133 689
Obilited.	61 106 114 117	206 213 158 192 177 201 236 225 220	0 194 150 157 112 171 32 143 163 230 590 668 498 709 839 490 3364
Colick, and Wind I	103 71 85 82	76 102 1 101 85 120 113 179 110	0 107 40 57 37 50 105 87 341 350 407 347 1280
Cold, and Cough Confumption, and Cough 24:	23 2200 2388 1988 ;	41 36 21 58 30 31 33 2350 2410 2216 2868 2 606 3184 2757 3610 298	23414 1827 101017131797 17541955 208024775 1578260 8022 77 140 43 550
Convultion 6	584 491 530 493	569 653 666 828 702 1027 807 841 743	21031 52 87 18 2.1 221 386 418 709 498 1734 2198 2656 3377 1324 9073
Cramp Cur of the Stone	2 1 3	1 1 2 4 1 3 5 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Drawned .	185 434 421 508 47 40 30 27	444 556 617 704 660 706 631 931 644 40 50 3 30 43 45 63 60 5	
Exceffive drinking Executed	8 17 20 43	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 18 10 13 12 18 13 13 13 13 13 13 13 13 13 13 13 13 13
Fainted in a Bath	· · · / 29 45		health data in the UK in the Bills of Mortality
Falling-Sickness Flox, and fmall Pox 1	3 2 2 3 139 4001100 184	S 127 3 127 3 139 812 1294 823 835 409 152	13 354 72 40 58 531 721354 203 127 001 1840 1013 and 2361 - 0 701
Found dead in the Streets French-Pox	6 6 9 8	7 9 14 4 3 4 9 11 21 20 20 20 23 23 53 5	(circa 1630), and his statistical analysis identified
Frighted Gout	4 4 1		
Grief	9 5 12 9 12 13 16 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	the plague as a significant source of premature
Hanged, and made - away themfelves	II 10 I3 I4 I II 2	9 14 15 9 14 16 24 18 1 2 0 0 5 3 4 5 3	11 30 8 8 0 15 3 8 7 37 18 48 47 72 57 222 1 13 26 47 72 57 20 0 15 15 16 17 10 0 15 10 0 15 10 0 15 10 0 0 0
Jaundice Taw-faln-	57 35 39 49	41 43 57 71 61 41 46 77 10	17 17 16 11 18 16 11 17 180 112 225 188 998
Impoftume	75 61 65 59	80 105 79 90 92 122 80 134 10	
Itch Killed by feveral Accidents	27 57 39 94	47 45 57 58 52 43 52 47 5	55 47 54 55 47 46 45 41 51 60 202 201 217 207 194 148 1021
king's Evil	27 26 22 19	22 20 26 26 27 24 23 28 2	28 54 10 25 18 38 35 20 20 69 97 150 94 94 102 66 537

Image source: British Library, public domain

Python and SciPy

Environment used in this coursework:

- $\,\triangleright\,$ Python programming language + SciPy + NumPy + matplotlib libraries
- Alternative to Matlab, Scilab, Octave, R
- \triangleright Free software
- $\,\triangleright\,$ A real programming language with simple syntax
 - much, much more powerful than a spreadsheet!
- ▷ Rich scientific computing libraries
 - statistical measures
 - visual presentation of data
 - optimization, interpolation and curve fitting
 - stochastic simulation
 - machine learning, image processing...

How do I run it?

- Cloud without local installation
 - Google Colaboratory, at colab.research.google.com
 - CoCalc, at cocalc.com
- ▷ Microsoft Windows: install one of
 - Anaconda from anaconda.com/download/
 - pythonxy from python-xy.github.io
- ▷ MacOS: install one of
 - Anaconda from anaconda.com/download/
 - Pyzo, from pyzo.org
- Linux: install packages python, numpy, matplotlib, scipy
 - your distribution's packages are probably fine

Python 2 or Python 3?

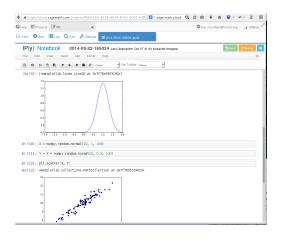
Python version 2 reached end-oflife in January 2020. You should only use Python 3 now.

Google Colaboratory

\rightarrow colab.research.google.com

- ▷ Runs in the cloud, access via web browser
- ▷ No local installation needed
- ▷ Can save to your Google Drive
- Notebooks are live computational documents, great for "experimenting"

CoCalc



 \rightarrow cocalc.com

- $\,\triangleright\,\,$ Runs in the cloud, access via web browser
- $\,\triangleright\,\,$ No local installation needed
- Access to Python in a Jupyter notebook, Sage, R
- ▷ Create an account for free
- \triangleright Similar tools:
 - Microsoft Azure Notebooks
 - JupyterHub, at jupyter.org/try

Python as a statistical calculator

```
In [1]: import numpy
In [2]: 2 + 2
Out[2]: 4
In [3]: numpy.sqrt(2 + 2)
Out[3]: 2.0
In [4]: numpy.pi
Out[4]: 3.141592653589793
In [5]: numpy.sin(numpy.pi)
Out[5]: 1.2246467991473532e-16
In [6]: numpy.random.uniform(20, 30)
Out[6]: 28.890905809912784
In [7]: numpy.random.uniform(20, 30)
Out[7]: 20.58728078429875
```


Python as a statistical calculator

```
In [3]: obs = numpy, random, uniform(20, 30, 10)
In [4]: obs
Out[4]:
arrav([ 25,64917726, 21,35270677, 21,71122725, 27,94435625,
        25.43993038, 22.72479854, 22.35164765, 20.23228629,
       26.05497056. 22.015047391)
In [5]: len(obs)
Out[5]: 10
In [6]: obs + obs
Out[61:
array([ 51.29835453, 42.70541355, 43.42245451, 55.8887125,
       50.87986076, 45.44959708, 44.7032953, 40.46457257,
        52.10994112, 44.03009478])
In [7]: obs - 25
Out[71:
array([ 0.64917726, -3.64729323, -3.28877275, 2.94435625,
0.43993038,
      -2.27520146, -2.64835235, -4.76771371, 1.05497056,
-2.984952611)
In [8]: obs.mean()
Out[8]: 23.547614834213316
In [9]: obs.sum()
Out[9]: 235,47614834213317
In [10]: obs.min()
Out[10]: 20.232286285845483
```


Python as a statistical calculator: plotting

In [2]: import numpy, matplotlib.pyplot as plt

In [3]: x = numpy.linspace(0, 10, 100)

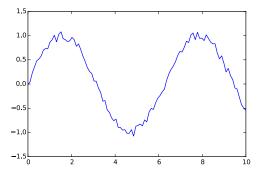
In [4]: obs = numpy.sin(x) + numpy.random.uniform(-0.1, 0.1, 100)

In [5]: plt.plot(x, obs)

Out[5]: [<matplotlib.lines.Line2D at 0x7f47ecc96da0>]

In [7]: plt.plot(x, obs)

Out[7]: [<matplotlib.lines.Line2D at 0x7f47ed42f0f0>]



Some basic notions in probability and statistics

Discrete vs continuous variables

Discrete

A discrete variable takes separate, **countable** values

Examples:

- ▷ outcomes of a coin toss: {head, tail}
- $\,\triangleright\,\,$ number of students in the class
- questionnaire responses {very unsatisfied, unsatisfied, satisfied, very satisfied}

Continuous

A continuous variable is the result of a **measurement** (a floating point number)

Examples:

- \triangleright height of a person
- ▷ flow rate in a pipeline
- $\,\triangleright\,\,$ volume of oil in a drum
- time taken to cycle from home to university

Random variables

A **random variable** is a set of possible values from a stochastic experiment

Examples:

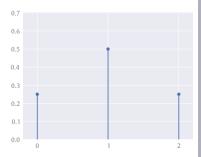
- ▷ sum of the values on two dice throws (a discrete random variable)
- \triangleright height of the water in a river at time *t* (a continuous random variable)
- $\,\triangleright\,\,$ time until the failure of an electronic component
- \triangleright number of cars on a bridge at time t
- $\,\triangleright\,$ number of new influenza cases at a hospital in a given month
- $\,\triangleright\,\,$ number of defective items in a batch produced by a factory

Probability Mass Functions

▷ For all values *x* that a discrete random variable *X* may take, we define the function

 $p_X(x) \stackrel{\text{def}}{=} \Pr(X \text{ takes the value } x)$

- \triangleright This is called the **probability mass function** (PMF) of *X*
- \triangleright Example: X = "number of heads when tossing a coin twice"
 - $p_X(0) \stackrel{\text{def}}{=} \Pr(X = 0) = \frac{1}{4}$
 - $p_X(1) \stackrel{\text{def}}{=} \Pr(X = 1) = \frac{2}{4}$
 - $p_X(2) \stackrel{\text{def}}{=} \Pr(X = 2) = \frac{1}{4}$



- ▷ **Task**: simulate "expected number of heads when tossing a coin twice"
- $\,\triangleright\,\,$ Let's simulate a coin toss by random choice between 0 and 1
 - > numpy.random.randint(0, 2)
 - 1

inclusive lower bound

exclusive upper bound

- ▷ **Task**: simulate "expected number of heads when tossing a coin twice"
- $\,\triangleright\,$ Let's simulate a coin toss by random choice between 0 and 1

```
> numpy.random.randint(0, 2)
```

1

```
inclusive lower bound
```

exclusive upper bound

count

 \triangleright Toss a coin twice:

```
> numpy.random.randint(0, 2, 2)
array([0, 1])
```


- ▷ **Task**: simulate "expected number of heads when tossing a coin twice"
- $\,\triangleright\,$ Let's simulate a coin toss by random choice between 0 and 1

```
> numpy.random.randint(0, 2)
```

```
inclusive lower bound
```

exclusive upper bound

 \triangleright Toss a coin twice:

1

```
> numpy.random.randint(0, 2, 2)
array([0, 1])
```

count

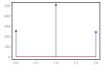
Number of heads when tossing a coin twice:
 numpy.random.randint(0, 2, 2).sum()

▷ **Task**: simulate "expected number of heads when tossing a coin twice"

▷ Do this 1000 times and plot the resulting PMF:

```
import numpy
import numpy
import matplotlib.pyplot as plt

N = 1000
heads = numpy.zeros(N, dtype=int)
for i in range(N):
    # second argument to randint is exclusive upper bound
    heads[i] = numpy.random.randint(0, 2, 2).sum()
plt.stem(numpy.bincount(heads), use_line_collection=True)
```

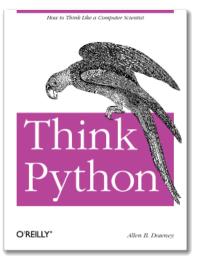


heads[i]: element number i of the array heads

More information on Python programming

For more information on Python syntax, check out the book *Think Python*

Purchase, or read online for free at greenteapress.com/wp/think-python-2e/



Probability Mass Functions: properties

 \triangleright A PMF is always non-negative

 $p_X(x) \geq 0$

 \triangleright Sum over the support equals 1

$$\sum_x p_X(x) = 1$$

$$\Pr(a \le X \le b) = \sum_{x \in [a,b]} p_X(x)$$

Probability Density Functions

▷ For continuous random variables, the **probability density** function $f_X(x)$ is defined by

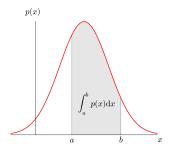
$$\Pr(a \le X \le b) = \int_a^b f_X(x) dx$$

 \triangleright It is non-negative

 $f_X(x) \geq 0$

 \triangleright The area under the curve (integral over \mathbb{R}) is 1

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

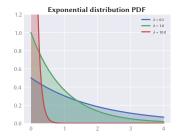


Probability Density Function

In reliability engineering, you are often concerned about the random variable *T* representing the **time at which a component fails**.

The PDF f(t) is the "failure density function". It tells you the probability of failure around age t.

$$\lim_{\Delta t \to 0} \frac{\Pr(t < T < t + \Delta t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{\int_{t}^{t + \Delta t} f(t) dt}{\Delta t}$$



Expectation of a random variable

- ▷ The **expectation** (or mean) is defined as a weighted average of all possible realizations of a random variable
- ▷ Discrete random variable:

$$\mathbb{E}[X] = \mu_X \stackrel{\text{\tiny def}}{=} \sum_{i=1}^N x_i \times \Pr(X = x_i)$$

▷ Continuous random variable:

$$\mathbb{E}[X] = \mu_X \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} u \times f(u) du$$

- ▷ Interpretation:
 - the center of gravity of the PMF or PDF
 - the average in a large number of independent realizations of your experiment

Important concept: independence

- Definition of statistical independence of two events: the outcome of one has no effect on the outcome of the other
- ▷ Typical example: successive coin tosses
- The probability of two independent events both happening is the **product** of their individual probabilities
- ▷ Often important in safety analysis:
 - if you are responsible for a car accident, your car insurance will become more expensive, because the event indicates you are more likely to have future car accidents (they are not independent events)
 - if an accident of a specific type occurs on an industrial site, it is less likely it will occur again the following year because people will make extra efforts to prevent that type of accident

Illustration: expected value with coins

 \triangleright X = "number of heads when tossing a coin twice"

 \triangleright PMF:

- $p_X(0) \stackrel{\text{def}}{=} \Pr(X = 0) = \frac{1}{4}$
- $p_X(1) \stackrel{\text{def}}{=} \Pr(X = 1) = \frac{2}{4}$
- $p_X(2) \stackrel{\text{def}}{=} \Pr(X = 2) = \frac{1}{4}$

$$\triangleright \quad \mathbb{E}[X] \stackrel{\text{\tiny def}}{=} \sum_{k} k \times p_X(k) = 0 \times \frac{1}{4} + 1 \times \frac{2}{4} + 2 \times \frac{1}{4} = 1$$

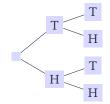


Illustration: expected value of a dice roll

▷ Expected value of a dice roll is
$$\sum_{i=1}^{6} i \times \frac{1}{6} = 3.5$$

- If we toss a dice a large number of times, the mean value should converge to 3.5
- ▷ Let's check that in Python

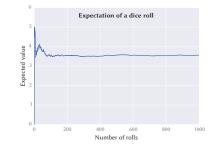
```
> numpy.random.randint(1, 7, 100).mean()
4.2
> numpy.random.randint(1, 7, 1000).mean()
3.478
```

(These numbers will be different for different executions. The greater the number of random "dice throws" we simulate, the greater the probability that the mean will be close to 3.5.)

Illustration: expected value of a dice roll

We can plot the speed of convergence of the mean towards the expected value as follows.

```
N = 1000
roll = numpy.zeros(N)
expectation = numpy.zeros(N)
for i in range(N):
    roll[i] = numpy.random.randint(1, 7)
for i in range(1, N):
    expectation[i] = numpy.mean(roll[0:i])
plt.plot(expectation)
```



Mathematical properties of expectation

If c is a constant and X and Y are random variables, then

 $\triangleright \ \mathbb{E}[c] = c$

 $\triangleright \mathbb{E}[cX] = c\mathbb{E}[X]$

- $\triangleright \ \mathbb{E}[c+X] = c + \mathbb{E}[X]$
- $\triangleright \quad \mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$

Note: in general $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$

Aside: existence of expectation

- $\,\triangleright\,$ Not all random variables have an expectation
- \triangleright Consider a random variable *X* defined on some (infinite) sample space Ω so that for all positive integers *i*, *X* takes the value
 - 2^i with probability 2^{-i-1}
 - -2^i with probability 2^{-i-1}
- ▷ Both the positive part and the negative part of *X* have infinite expectation in this case, so $\mathbb{E}[X]$ would have to be $\infty \infty$ (meaningless)

Variance of a random variable

- ▷ The **variance** provides a measure of the dispersion around the mean
 - intuition: how "spread out" the data is
- ▷ For a discrete random variable:

$$\operatorname{Var}(X) = \sigma_X^2 \stackrel{\text{def}}{=} \sum_{i=1}^N (X_i - \mu_X)^2 \operatorname{Pr}(X = x_i)$$

 $\,\triangleright\,\,$ For a continuous random variable:

$$\operatorname{Var}(X) = \sigma_X^2 \stackrel{\text{\tiny def}}{=} \int_{-\infty}^{\infty} (x - \mu_x)^2 f(u) du$$

- \triangleright In Python:
 - obs.var() if obs is a NumPy vector
 - numpy.var(obs) for any Python sequence (vector or list)

In Excel, function VAR

Variance with coins

- \triangleright X = "number of heads when tossing a coin twice"
- \triangleright PMF:
 - $p_X(0) \stackrel{\text{def}}{=} \Pr(X = 0) = \frac{1}{4}$
 - $p_X(1) \stackrel{\text{def}}{=} \Pr(X = 1) = \frac{2}{4}$
 - $p_X(2) \stackrel{\text{def}}{=} \Pr(X = 2) = \frac{1}{4}$

 \triangleright

$$\operatorname{Var}(X) \stackrel{\text{def}}{=} \sum_{i=1}^{N} (x_i - \mu_X)^2 \operatorname{Pr}(X = x_i)$$
$$= \frac{1}{4} \times (0 - 1)^2 + \frac{2}{4} \times (1 - 1)^2 + \frac{1}{4} \times (2 - 1)^2 = \frac{1}{2}$$

Variance of a dice roll

▷ Analytic calculation of the variance of a dice roll:

$$Var(X) \stackrel{\text{def}}{=} \sum_{i=1}^{N} (X_i - \mu_X)^2 \Pr(X = x_i)$$

= $\frac{1}{6} \times ((1 - 3.5)^2 + (2 - 3.5)^2 + (3 - 3.5)^2 + (4 - 4.5)^2 + (5 - 3.5)^2 + (6 - 3.5)^2)$
= 2.916

 $\,\triangleright\,\,$ Let's reproduce that in Python

count

Properties of variance as a mathematical operator

If c is a constant and X and Y are random variables, then

- \lor Var(X) ≥ 0 (variance is always non-negative)
- \triangleright Var(c) = 0
- \triangleright Var(c + X) = Var(X)
- \triangleright Var(cX) = c^2 Var(X)
- \lor Var(X + Y) = Var(X) + Var(Y), if X and Y are independent
- \lor Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y) if X and Y are dependent

Beware: $\vdash \mathbb{E}[X^2] \neq (\mathbb{E}[X])^2$ $\vdash \mathbb{E}[\sqrt{X}] \neq \sqrt{\mathbb{E}[X]}$

Properties of variance as a mathematical operator

If c is a constant and X and Y are random variables, then

- \lor Var(X) ≥ 0 (variance is always non-negative)
- \triangleright Var(c) = 0
- \triangleright Var(c + X) = Var(X)
- \triangleright Var(cX) = c^2 Var(X)
- \lor Var(X + Y) = Var(X) + Var(Y), if X and Y are independent
- \lor Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y) if X and Y are dependent

Note:

- $\triangleright \operatorname{Cov}(X,Y) \stackrel{\text{\tiny def}}{=} \mathbb{E}\left[(X \mathbb{E}[X])(Y \mathbb{E}[Y])\right]$
- \triangleright Cov(X, X) = Var(X)

Beware: $\mathbb{E}[X^2] \neq (\mathbb{E}[X])^2$ $\mathbb{E}[\sqrt{X}] \neq \sqrt{\mathbb{E}[X]}$

Standard deviation

 $\triangleright \text{ Formula for variance: Var}(X) \stackrel{\text{\tiny def}}{=} \sum_{i=1}^{N} (X_i - \mu_X)^2 \Pr(X = x_i)$

- ▷ If random variable *X* is expressed in metres, Var(X) is in m^2
- D To obtain a measure of dispersion of a random variable around its expected value which has the same units as the random variable itself, take the square root
- ▷ Standard deviation $\sigma \stackrel{\text{def}}{=} \sqrt{\operatorname{Var}(X)}$
- \triangleright In Python:
 - obs.std() if obs is a NumPy vector
 - numpy.std(obs) for any Python sequence (vector or list)

In Excel, function STDEV

Properties of standard deviation

- \triangleright Suppose Y = aX + b, where
 - a and b are scalar
 - X and Y are two random variables
- \triangleright Then $\sigma(Y) = |a| \sigma(X)$
- ▷ Let's check that with NumPy:

```
> X = numpy.random.uniform(100, 200, 1000)
> a = -32
> b = 16
> Y = a * X + b
> Y.std()
914.94058476118835
> abs(a) * X.std()
914.94058476118835
```


Properties of expectation & variance: empirical testing with numpy

```
\triangleright \ \mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]
```

```
> X = numpy.random.randint(1, 101, 1000)
> Y = numpy.random.randint(-300, -199, 1000)
> X.mean()
50.57500000000003
> Y.mean()
-251.613
> (X + Y).mean()
-201.038
```


Properties of expectation & variance: empirical testing with numpy

 $\triangleright \ \mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$

```
> X = numpy.random.randint(1, 101, 1000)
> Y = numpy.random.randint(-300, -199, 1000)
> X.mean()
50.57500000000003
> Y.mean()
-251.613
> (X + Y).mean()
-201.038
```

 \triangleright Var(cX) = c^2 Var(X)

```
> numpy.random.randint(1, 101, 1000).var()
836.616716
> numpy.random.randint(5, 501, 1000).var()
20514.814318999997
> 5 * 5 * 836
20900
```


Properties of expectation & variance: empirical testing with numpy

 $\triangleright \ \mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$

```
> X = numpy.random.randint(1, 101, 1000)
> Y = numpy.random.randint(-300, -199, 1000)
> X.mean()
50.57500000000003
> Y.mean()
-251.613
> (X + Y).mean()
-201.038
```



```
\triangleright Var(cX) = c^2 Var(X)
```

```
> numpy.random.randint(1, 101, 1000).var()
836.616716
> numpy.random.randint(5, 501, 1000).var()
20514.814318999997
> 5 * 5 * 836
20900
```


Cumulative Distribution Function

▷ The cumulative distribution function (CDF) of random variable *X*, denoted by $F_X(x)$, indicates the probability that *X* assumes a value $\leq x$, where *x* is any real number

$$F_X(x) = \Pr(X \le x) \quad -\infty \le x \le \infty$$

- ▷ Properties of a CDF:
 - $F_X(x)$ is a non-decreasing function of x
 - $\bullet \ 0 \leq F_X(x) \leq 1$
 - $\lim_{x\to\infty} F_X(x) = 1$
 - $\lim_{x\to\infty} F_X(x) = 0$
 - if $x \le y$ then $F_X(x) \le F_X(y)$
 - $\bullet \ \Pr(a < X \leq b) = F_X(b) F_X(a) \quad \forall b > a$

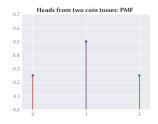
CDF of a discrete distribution

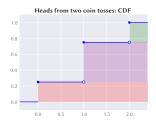
$$F_X(x) = \Pr(X \le x) \quad -\infty \le x \le \infty$$
$$= \sum_{x_i \le x} \Pr(X = x_i)$$

The CDF is built by accumulating probability as *x* increases.

Consider the random variable *X* = "number of heads when tossing a coin twice".

x012PMF,
$$p_X(x) = \Pr(X = x)$$
 $\frac{1}{4}$ $\frac{2}{4}$ $\frac{1}{4}$ CDF, $F_X(x) = \Pr(X \le x)$ $\frac{1}{4}$ $\frac{3}{4}$ 1

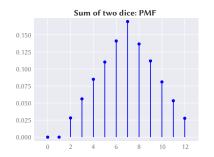




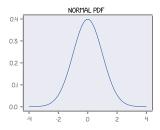
CDF of a discrete distribution

$$F_X(x) = \Pr(X \le x) \quad -\infty \le x \le \infty$$
$$= \sum_{x_i \le x} \Pr(X = x_i)$$

Example: sum of two dice

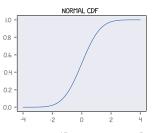


CDF of a continuous distribution



Python: scipy.stats.norm(loc=mu, scale=sigma).pdf(x)

 $F_X(x) = \Pr(X \le x)$ $= \int_{-\infty}^x f(u) du$

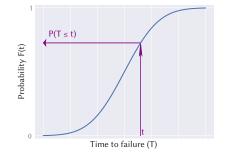


Python: scipy.stats.norm(loc=mu, scale=sigma).cdf(x)

Interpreting the CDF

In reliability engineering, we are often interested in the random variable *T* representing **time to failure** of a component.

The cumulative distribution function tells you the probability that lifetime is $\leq t$.



Problem

Field data tells us that the time to failure of a pump, *X*, is normally distributed. The mean and standard deviation of the time to failure are estimated from historical data as μ = 3200 hours and σ = 600 hours.

What is the probability that a pump will fail before 2000 hours of operation?

Problem

Field data tells us that the time to failure of a pump, *X*, is normally distributed. The mean and standard deviation of the time to failure are estimated from historical data as μ = 3200 hours and σ = 600 hours.

What is the probability that a pump will fail before 2000 hours of operation?

Solution

We are interested in calculating $Pr(X \le 2000)$ and we know that X follows a norm(3200, 600) distribution. We can use the CDF to calculate $Pr(X \le 2000)$.

We want norm(3200, 600).cdf(2000), which is 0.022750 (or 2.28%).

Problem

Field data tells us that the time to failure of a pump, *X*, is normally distributed. The mean and standard deviation of the time to failure are estimated from historical data as μ = 3200 hours and σ = 600 hours.

What is the probability that a pump will fail after it has worked for *at least* 2000 hours?

Problem

Field data tells us that the time to failure of a pump, *X*, is normally distributed. The mean and standard deviation of the time to failure are estimated from historical data as μ = 3200 hours and σ = 600 hours.

What is the probability that a pump will fail after it has worked for *at least* 2000 hours?

Solution

We are interested in calculating Pr(X > 2000) and we know that X follows a norm(3200, 600) distribution. We know that $Pr(X > 2000) = 1 - Pr(X \le 2000)$.

```
We want 1 - norm(3200, 600).cdf(2000), which is 0.977 (or 97.7%).
```

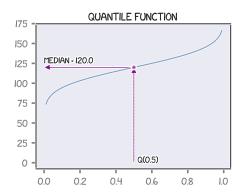

The quantile function

The quantile function is the inverse of the CDF.

The **median** is the point where half the population is below and half is above (it's the o.5 quantile, and the 50th percentile).

Consider a normal distribution centered in 120 with a standard deviation of 20.

```
> import scipy.stats
> distrib = scipy.stats.norm(120, 20)
> distrib.ppf(0.5)
120.0
> distrib.cdf(120.0)
0.5
```

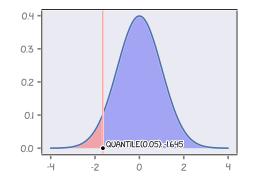


Quantile measures

A quantile measure is a **cutpoint in the probability distribution** indicating the value below which a given percentage of the sample falls.

The 0.05 quantile is the *x* value which has 5% of the sample smaller than *x*.

It's also called the 5th **percentile**.



The 0.05 quantile of the standard normal distribution (centered in 0, standard deviation of 1) $\,$

import scipy.stats scipy.stats.norm(0, 1).ppf(0.05) -1.6448536269514729

Quantile measures

Quantile measures are often used in health.

To the right, illustration of the range of baby heights and weights as a function of their age.

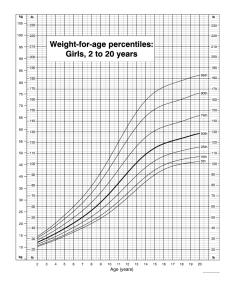


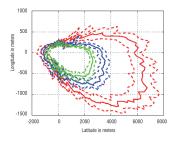
Image source: US CDC

Quantile measures in risk analysis

Risk analysis and reliability engineering: analysts are interested in the **probability of extreme events**

- ▷ what is the probability of a flood higher than my dike?
- ▷ how high do I need to build a dike to protect against hundred-year floods?
- what is the probability of a leak given the corrosion measurements I have made?

Problem: these are **rare events** so it's difficult to obtain confidence that a model representing the underlying mechanism works well for extremes



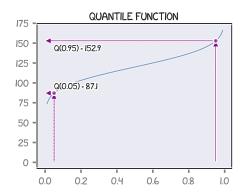
Three percentile measures (95% = green, 99% = blue, 99.99% = red) of the spatial risk of fallback from a rocket launcher. Dotted lines indicate uncertainty range.

Image source: aerospacelab-journal.org/sites/www.aerospacelab-journal.org/files/AL04-13_0.pdf

Quantiles and confidence intervals

A **90% confidence interval** is the set of points between the 0.05 quantile (5% of my observations are smaller than this value) and the 0.95 quantile (5% of my observations are larger than this value).

In the example to the right, the 90% confidence interval is [87.1, 152.9].



Scipy.stats package

- D The scipy.stats module implements many continuous and discrete random variables and their associated distributions
 - binomial, poisson, exponential, normal, uniform, weibull...
- $\,\triangleright\,$ Usage: instantiate a distribution then call a method
 - rvs: random variates
 - pdf: Probability Density Function
 - cdf: Cumulative Distribution Function
 - sf: Survival Function (1-CDF)
 - ppf: Percent Point Function (inverse of CDF)
 - isf: Inverse Survival Function (inverse of SF)

Simulating dice throws

▷ Maximum of 1000 throws

```
> dice = scipy.stats.randint(1, 7)
> dice.rvs(1000).max()
6
```

exclusive upper bound

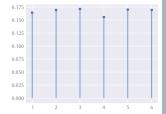
- ▷ What is the probability of a die rolling 4?
- ▷ What is the probability of rolling 4 or below?
 - > dice.cdf(4)
 - 0.6666666666666666
- \triangleright What is the probability of rolling between 2 and 4 (inclusive)?

```
> dice.cdf(4) - dice.cdf(1)
0.5
```


Simulating dice

> import numpy

```
> import matplotlib.pyplot as plt
> toss = numpy.random.choice(range(1, 7))
> toss
2
> N = 10000
> tosses = numpy.random.choice(range(1, 7), N)
> tosses
array([6, 6, 4, ..., 2, 4, 5])
> tosses.mean()
3.5088
> numpy.median(tosses)
4.0
> len(numpy.where(tosses > 3)[0]) / float(N)
0.5041
> x, y = numpy.unique(tosses, return_counts=True)
> plt.stem(x, y/float(N))
```



Scipy.stats examples

- Generate 5 random variates from a continuous uniform distribution between 90 and 100
- Check that the expected value of the distribution is around 95
- Check that around 20% of variates are less than 92

> import scipy.stats

```
> u = scipy.stats.uniform(90, 10)
> u.rvs(5)
array([ 94.0970853 , 92.41951494,
                          90.25127254, 91.69097729,
                          96.1811148 ])
> u.rvs(1000).mean()
94.892801456986376
> (u.rvs(1000) < 92).sum() / 1000.0
0.193</pre>
```


Some important probability distributions

50

Some important probability distributions

Coin tossing with uneven coin	Bernoulli	scipy.stats.bernoulli
Rolling a dice	uniform	scipy.stats.randint
Counting errors/successes	Binomial	scipy.stats.binom
Trying until success	geometric	scipy.stats.geom
Countable, rare events whose occurrence is independent	Poisson	scipy.stats.poisson
Random "noise", sums of many variables	normal	scipy.stats.norm

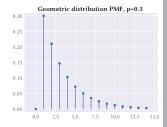
Bernoulli trials

- ▷ A *trial* is an experiment which can be repeated many times with the same probabilities, each realization being independent of the others
- ▷ Bernoulli trial: an experiment in which *N* trials are made of an event, with probability *p* of "success" in any given trial and probability 1 p of "failure"
 - "success" and "failure" are mutually exclusive
 - example: sequence of coin tosses
 - example: arrival of requests in a web server per time slot

The geometric distribution (trying until success)

- $\,\triangleright\,$ We conduct a sequence of Bernoulli trials, each with success probability p
- \triangleright What's the probability that it takes *k* trials to get a success?
 - Before we can succeed at trial k, we must have had k 1 failures
 - Each failure occurred with probability 1-p, so total probability $(1-p)^{k-1}$
 - + Then a single success with probability \boldsymbol{p}

 $\triangleright \operatorname{Pr}(X=k) = (1-p)^{k-1}p$



The geometric distribution: intuition

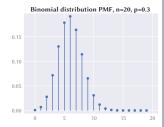
- \triangleright Suppose I am at a party and I start asking girls to dance. Let *X* be the number of girls that I need to ask in order to find a partner.
 - If the first girl accepts, then X = 1
 - If the first girl declines but the next girl accepts, then X = 2
- \triangleright X = k means that I failed on the first k 1 tries and succeeded on the kth try
 - My probability of failing on the first try is (1 p)
 - My probability of failing on the first two tries is (1 p)(1 p)
 - My probability of failing on the first n 1 tries is $(1 p)^{k-1}$
 - Then, my probability of succeeding on the \mathbf{n}^{th} try is p
- ▷ Properties:
 - $\mathbb{E}[X] = \frac{1}{p}$
 - $\operatorname{Var}(X) = \frac{1-p}{p^2}$

The binomial distribution (counting successes)

- $\,\triangleright\,$ Also arises when observing multiple Bernoulli trials
 - exactly two mutually exclusive outcomes, "success" and "failure"
- ▷ *Binomial*(*p*, *k*, *n*): probability of observing *k* successes in *n* trials, where probability of success on a single trial is *p*
 - example: toss a coin *n* times (p = 0.5) and see *k* heads
- $\,\triangleright\,\,$ We have k successes, which happens with a probability of p^k
- ▷ We have n k failures, which happens with probability $(1 p)^{n-k}$
- ▷ We can generate these *k* successes in many different ways from *n* trials, $\binom{n}{k}$ ways

$$\triangleright \operatorname{Pr}(X=k) = \binom{n}{k}(1-p)^{n-k}p^k$$

Reminder: binomial coefficient $\binom{n}{k}$ is $\frac{n!}{k!(n-k)!}$



Binomial distribution: application

- Consider a medical test with an error rate of 0.1 applied to 100 patients
- What is the probability that we see at most 1 test error?
- What is the probability that we see at most 10 errors?
- ▷ If the random variable *X* represents the number of test errors, what is the smallest *k* such that $P(X \le k)$ is at least 0.05?

```
> import scipy.stats
```

```
> test = scipy.stats.binom(n=100, p=0.1)
> test.cdf(1)
0.00032168805319411544
> test.cdf(10)
0.58315551226649232
> test.ppf(0.05)
5.0
```

When reporting results, make sure you pay attention to the number of significant figures in the input data (2 in this case).

Binomial distribution: application

Q: A company drills 9 oil exploration wells, each with a 10% chance of success. Eight of the nine wells fail. What is the probability of that happening?

Binomial distribution: application

Q: A company drills 9 oil exploration wells, each with a 10% chance of success. Eight of the nine wells fail. What is the probability of that happening?

Analytic solution

Each well is a binomial trial with p = 0.1. We want the probability of exactly one success.

```
> import scipy.stats
```

```
> wells = scipy.stats.binom(n=9, p=0.1)
```

```
> wells.pmf(1)
```

```
0.38742048899999959
```

Answer by simulation

Run 20000 trials of the model and count the number that generate 1 positive result.

```
> import scipy.stats
> N = 20_000
> wells = scipy.stats.binom(n=9, p=0.1)
> trials = wells.rvs(N)
> (trials == 1).sum() / float(N)
0.3867999999999998
```


Binomial distribution: application

Q: A company drills 9 oil exploration wells, each with a 10% chance of success. Eight of the nine wells fail. What is the probability of that happening?

Analytic solution

```
Each well is a binomial trial with p = 0.1. We want the probability of exactly one success.
```

```
> import scipy.stats
> wells = scipy.stats.binom(n=9, p=0.1)
> wells.pmf(1)
0.38742048899999959
```

Answer by simulation

Run 20000 trials of the model and count the number that generate 1 positive result.

```
> import scipy.stats
> N = 20_000
> wells = scipy.stats.binom(n=9, p=0.1)
> trials = wells.rvs(N)
> (trials == 1).sum() / float(N)
0.3867999999999998
```

The probability of all 9 wells failing is $0.9^9 = 0.3874$ (and also wells.pmf(\emptyset)).

The probability of *at least* 8 wells failing is wells.cdf(1). It's also wells.pmf(0) + wells.pmf(1) (it's 0.7748).

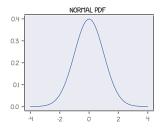
Binomial distribution: properties

Exercise: check empirically (with SciPy) the following properties of the binomial distribution:

- ▷ the mean of the distribution (μ_x) is equal to $n \times p$
- ▷ the variance (σ_X^2) is $n \times p \times (1 p)$
- ▷ the standard deviation (σ_x) is $\sqrt{n \times p \times (1-p)}$

Gaussian (normal) distribution

- ▷ The famous "bell shaped" curve, fully described by its mean and standard deviation
- Good representation of distribution of measurement errors and many population characteristics
 - size, mechanical strength, duration, speed
- ▷ Symmetric around the mean
- \triangleright Mean = median = mode
- \triangleright Python: scipy.stats.norm(µ, σ)
- \triangleright Excel: NORMINV(RAND(), μ , σ)

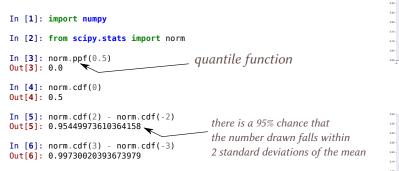


Scipy.stats examples

- Consider a Gaussian distribution centered in 5, standard deviation of 1
- Check that half the distribution is located to the left of 5
- ▷ Find the first percentile (value of x which has 1% of realizations to the left)
- Check that it is equal to the 99% survival quantile

```
> dist = scipy.stats.norm(5, 1)
> dist.cdf(5)
0.5
> dist.ppf(0.5)
5.0
> dist.ppf(0.01)
2.6736521259591592
> dist.isf(0.99)
2.6736521259591592
> dist.cdf(2.67)
0.0099030755591642452
```

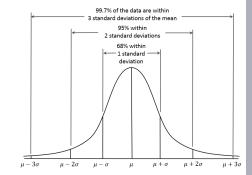

Area under the normal distribution



In prehistoric times, statistics textbooks contained large tables of quantile values for the normal distribution. With cheap computing power, no longer necessary!

The "68-95-99.7 rule"

- ▷ The 68–95–99.7 rule (aka the *three-sigma rule*) states that if *x* is an observation from a normally distributed random variable with mean μ and standard deviation σ , then
 - $\Pr(\mu \sigma \le x \le \mu + \sigma) \approx 0.6827$
 - $\Pr(\mu 2\sigma \le x \le \mu + 2\sigma) \approx 0.9545$
 - $\Pr(\mu 3\sigma \le x \le \mu + 3\sigma) \approx 0.9973$
- The 6σ quality management method pioneered by Motorola aims for 99.99966% of production to meet quality standards
 - 3.4 defective parts per million opportunities (DPMO)
 - actually, that's only 4.5 sigma!
 - (scipy.stats.norm.cdf(6) scipy.stats.norm.cdf(-6)) * 100 → 99.999999802682453

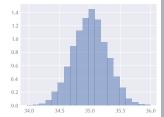


Central limit theorem

- ▷ Theorem states that the mean (also true of the sum) of a set of random measurements will tend to a normal distribution, no matter the shape of the original measurement distribution
- Part of the reason for the ubiquity of the normal distribution in science
- ▷ Python simulation:

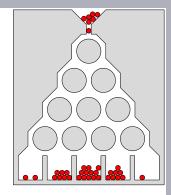
```
N = 10_000
sim = numpy.zeros(N)
for i in range(N):
    sim[i] = numpy.random.uniform(30, 40, 100).mean()
plt.hist(sim, bins=20, alpha=0.5, density=True)
```

Exercise: try this with other probability distributions and check that the simulations tend towards a normal distribution



Galton board

- ▷ The Galton board (or "bean machine") has two parts:
 - top: evenly-spaced pegs in staggered rows
 - bottom: evenly-spaced rectangular slots
- ▷ Balls introduced at the top bounce of the pegs, equal probability of going right or left at each successive row
 - each vertical step is a Bernoulli trial
- Balls collect in the slots at the bottom with heights following a binomial distribution
 - and for large number of balls, a normal distribution
- ▷ Interactive applet emulating a Galton board:
 - \rightarrow randomservices.org/random/apps/GaltonBoardGame.html



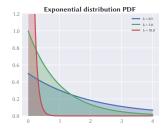
Named after English psychometrician Sir Francis Galton (1822–1911)

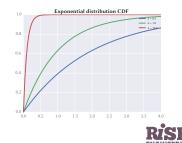
Exponential distribution

- ▷ **PDF**: $f_Z(z) = \lambda e^{-\lambda z}, z \ge 0$
- \triangleright CDF: $\Pr(Z \leq z) = F_Z(z) = 1 e^{-\lambda z}$
- b The hazard function, or *failure rate*, is constant, equal to λ
 1/λ is the "mean time between failures", or MTBF

• λ can be calculated by $\frac{\text{total number of failures}}{\text{total operating time}}$

- Often used in reliability engineering to represent failure of electronic equipment (no wear)
- \triangleright Property: expected value of exponential random variable is $\frac{1}{4}$





Exponential distribution

Let's check that the expected value of an exponential random variable is $\frac{1}{4}$

```
> import scipy.stats
```

- > lda = 25
- > dist = scipy.stats.expon(scale=1/float(lda))
- > obs = dist.rvs(size=1000)
- > obs.mean()
- 0.041137615318791773
- > obs.std()
- 0.03915081431615041
- > 1/float(lda)

0.04

Exponential distribution: memoryless property

 $\,\triangleright\,$ An exponentially distributed random variable T obeys

 $\Pr(T > s + t \mid T > s) = \Pr(T > t), \qquad \forall s, t \ge 0$

where the vertical bar | indicates a conditional probability.

- ▷ Interpretation: if *T* represents time of failure
 - The distribution of the remaining lifetime does not depend on how long the component has been operating (item is "as good as new")
 - Distribution of remaining lifetime is the same as the original lifetime
 - An observed failure is the result of some suddenly appearing failure, not due to gradual deterioration

Failure of power transistors (1/2)

- Suppose we are studying the reliability of a power system, which fails if any of 3 power transistors fails
- ▷ Let X, Y, Z be random variables modelling failure time of each transistor (in hours)
 - transistors have no physical wear, so model by exponential random variables
 - failures are assumed to be independent
- $\triangleright X \sim Exp(1/5000)$ (mean failure time of 5000 hours)
- \triangleright *Y* ~ *Exp*(¹/₈₀₀₀) (mean failure time of 8000 hours)
- $\triangleright Z \sim Exp(1/4000)$ (mean failure time of 4000 hours)

Failure of power transistors (2/2)

 \triangleright System fails if any transistor fails, so time to failure T is min(X, Y, Z)

$$\begin{aligned} \Pr(T \le t) &= 1 - \Pr(T > t) \\ &= 1 - \Pr(\min(X, Y, Z) > t) \\ &= 1 - \Pr(X > t, Y > t, Z > t) \\ &= 1 - \Pr(X > t) \times \Pr(Y > t) \times \Pr(Z > t) \quad (\text{independence}) \\ &= 1 - (1 - \Pr(X \le t)) (1 - \Pr(Y \le t)) (1 - \Pr(Z \le t)) \\ &= 1 - (1 - (1 - e^{-t/5000})) (1 - (1 - e^{-t/8000})) (1 - (1 - e^{-t/4000})) \quad (\text{exponential CDF}) \\ &= 1 - e^{-t/5000} e^{-t/8000} e^{-t/4000} \\ &= 1 - e^{-t(1/\text{soure} + 1/\text{soure})} \\ &= 1 - e^{-0.000575t} \end{aligned}$$

- $\,\triangleright\,\,$ System failure time is also exponentially distributed, with parameter 0.000575
- $\,\triangleright\,\,$ Expected time to system failure is 1/0.000575 = 1739 hours

Poisson process: exponential arrival times

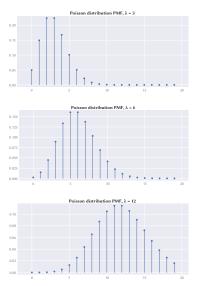
- A Poisson process is any process where independent events occur at a constant average rate
 - time between each pair of consecutive events follows an exponential distribution with parameter λ (the *arrival rate*)
 - each of these inter-arrival times is assumed to be independent of other inter-arrival times
 - example: babies are born at a hospital at a rate of five per hour
- The process is *memoryless*: number of arrivals in any bounded interval of time after time *t* is independent of the number of arrivals before *t*
- ▷ Good model for many types of phenomena:
 - number of road crashes in a zone
 - number of faulty items in a production batch
 - arrival of customers in a queue
 - occurrence of earthquakes

The Poisson distribution

- ▷ The probability distribution of the *counting process* associated with a Poisson process
 - the number of events of the Poisson process over a time interval
- ▷ Probability mass function:

$$\Pr(Z = k) = \frac{\lambda^k e^{-\lambda}}{k!}, k = 0, 1, 2...$$

- $\begin{tabular}{ll} \begin{tabular}{ll} \beg$
 - increasing $\boldsymbol{\lambda}$ adds more probability to larger values
- > Python: scipy.stats.poisson(λ)



Poisson distribution and Prussian horses

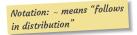
- Number of fatalities for the Prussian cavalry resulting from being kicked by a horse was recorded over a period of 20 years
 - for 10 army corps, so total number of observations is 200

Deaths	Occurrences
0	109
1	65
2	22
3	3
4	1
> 4	0

- It follows a Poisson distribution
- ▷ **Exercise**: reproduce the plot on the right which shows a fit between a Poisson distribution and the historical data

The Poisson distribution: properties

- $\,\triangleright\,$ Expected value of the Poisson distribution is equal to its parameter μ
- $\,\triangleright\,\,$ Variance of the Poisson distribution is equal to its parameter μ
- $\,\triangleright\,$ The sum of independent Poisson random variables is also Poisson
- ▷ Specifically, if Y_1 and Y_2 are independent with $Y_i \sim Poisson(\mu_i)$ for i = 1, 2then $Y_1 + Y_2 \sim Poisson(\mu_1 + \mu_2)$
- ▷ **Exercise**: test these properties empirically with Python



Simulating earthquake occurrences (1/2)

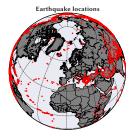
- Suppose we live in an area where there are typically 0.03 earthquakes of intensity 5 or more per year
- Assume earthquake arrival is a Poisson process
 - interval between earthquakes follows an exponential distribution
 - · events are independent
- Simulate the random intervals between the next earthquakes of intensity 5 or greater
- What is the 25th percentile of the interval between 5+ earthquakes?

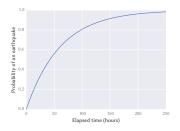
> from scipy.stats import expon

```
> expon(scale=1/0.03).ppf(0.25)
9.5894024150593644
# answer is "around 10 years"
```


Simulating earthquake occurrences (2/2)

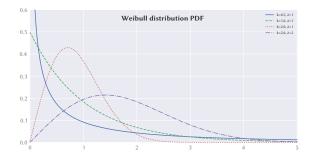
- Worldwide: 144 earthquakes of magnitude 6 or greater in 2013 (one every 60.8 hours on average)
- \triangleright Rate: $\lambda = \frac{1}{60.8}$ per hour
- What's the probability that an earthquake of magnitude 6 or greater will occur (worldwide) in the next day?
 - right: plot of the CDF of the corresponding exponential distribution
 - scipy.stats.expon(scale=60.8).cdf(24) =
 0.326





Data source: earthquake.usgs.gov/earthquakes/search/

Weibull distribution



- ▷ Very flexible distribution, can model left-skewed, right-skewed, and symmetric data
- > Widely used for modeling reliability data
- \triangleright Python: scipy.stats.dweibull(k, μ , λ)

82/87

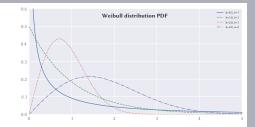
Weibull distribution

$\triangleright k < 1$: the failure rate **decreases over time**

- significant "infant mortality"
- · defective items failing early and being weeded out of the population
- \triangleright *k* = 1: the failure rate is **constant over time** (equivalent to an exponential distribution)
 - suggests random external events are causing failure

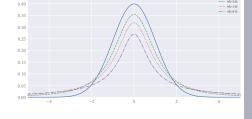
\triangleright k > 1: the failure rate increases with time

• "aging" process causes parts to be more likely to fail as time goes on



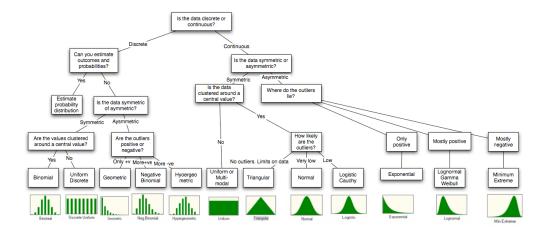
Student's t distribution

- Symmetric and bell-shaped like the normal distribution, but with heavier tails
- ▷ As the number of degrees of freedom *df* grows, the t-distribution approaches the normal distribution with mean 0 and variance 1
- > Python: scipy.stats.t(df)
- ▷ First used by W. S. Gosset (aka Mr Student, 1876-1937), for quality control at Guinness breweries



Student's t distribution PDF

Distribution choice flowchart



Source of this useful flowchart is uncertain, possibly it is due to Aswath Damodaran, NYU

Image credits

- Dice on slide 39, flic.kr/p/9SJ5g, CC BY-NC-ND licence
- ▷ Galton board on slide 57: Wikimedia Commons, CC BY-SA licence
- > Transistor on slide 61: flic.kr/p/4d4XSj, CC BY licence)
- Photo of Mr Gosset (aka Mr Student) on slide 72 from Wikimedia Commons, public domain
- ▷ Microscope on slide 73 adapted from flic.kr/p/aeh1J5, CC BY licence

For more free content on risk engineering, visit risk-engineering.org

Further reading

- SciPy lecture notes: scipy-lectures.org
- Book Statistics done wrong, available online at statisticsdonewrong.com
- A gallery of interesting Python notebooks: github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks

For more free content on risk engineering, visit risk-engineering.org

Feedback welcome!

This presentation is distributed under the terms of the Creative Commons *Attribution – Share Alike* licence

Was some of the content unclear? Which parts were most useful to you? Your comments to feedback@risk-engineering.org (email) or @LearnRiskEng (Twitter) will help us to improve these materials. Thanks!

For more free content on risk engineering, visit risk-engineering.org

@LearnRiskEng

fb.me/RiskEngineering

