
Graphs and Network Flows
IE411

Lecture 2

Dr. Ted Ralphs

IE411 Lecture 2 1

References for Today’s Lecture

• Required reading

– Sections 17.2-17.5

• References

– AMO Sections 2.3
– CLRS Section 22.1

1

IE411 Lecture 2 2

Network Representation

• Our goal is to develop “efficient” algorithms → reasonable computation
time.

• The main factors affecting efficiency are

– The underlying algorithm
– Data structure for storing the network

• The same algorithm may behave much differently with different graph
data structure.

• What information do we need to store?

– network topology (structure of nodes and arcs)
– associated data (costs, capacities, supplies/demands)

• What are the important operations we might need to perform with a
network data structure?

2

IE411 Lecture 2 3

Common Representations

• Data structures

– Node-Arc Incidence Matrix
– Node-Node Adjacency Matrix
– Adjacency List
– Forward Star (Reverse Star)

• How do we evaluate a data structure?

3

IE411 Lecture 2 4

Aside: Multiarcs and Loops

• Multiarcs are two or more arcs with the same tail and head nodes.

• A loop is an arc with the property that its tail and head nodes are the
same.

• Generally we will assume that our networks do not contain parallel arcs
or loops.

• The existence of such arcs can cause problems with standard data
structures.

4

IE411 Lecture 2 5

Example Graph

1

2

3

4

5

5

IE411 Lecture 2 6

(Node-Arc) Incidence Matrix

• n×m matrix denoted N .

• One row for each node and one column for each arc.

• For each arc (i, j), put +1 in row i and -1 in row j.

(1, 2) (1, 3) (2, 3) (2, 4) (3, 2) (3, 4) (3, 5) (4, 5)
1
2
3
4
5

6

IE411 Lecture 2 7

(Node-Arc) Incidence Matrix

• What is the size of the matrix?

• How many entries are non-zero?

• What information do we get by reading across a row?

• Is this a space efficient representation?

• How about other operations?

7

IE411 Lecture 2 8

(Node-Node) Adjacency Matrix

• n× n matrix denoted H

• one row for each node and one column for each node

• entry hij = 1 if arc (i, j) ∈ A (0 otherwise)

1 2 3 4 5
1
2
3
4
5

8

IE411 Lecture 2 9

(Node-Node) Adjacency Matrix

• What is the size of the matrix?

• How many entries are non-zero?

• What data structures might we use to store arc costs and capacities?

• Is this a space efficient representation?

• What operations are most efficient with this data structure?

9

IE411 Lecture 2 10

Adjacency List

• Adjacency list of node i, A(i), is a list of the nodes j for which (i, j) ∈ A

• List stored as a linked list.

• Need one linked list of length |A(i)| for each node.

• Cell can store additional fields such as arc cost and capacity

• Is this a space efficient representation?

• What operations are most efficient with this data structure?

10

IE411 Lecture 2 11

Forward Star

• Stores node adjacency list of each node in one large array

• Associates a unique sequence number with each arc using a specific order
starting with arcs outgoing from node 1, then node 2, etc.

• Stores tail information about each arc in tail array, head information in
head array, etc.

• Maintains a pointer for each node that indicates the smallest numbered
arc in the arc list for that node.

• For consistency, set pointer(1) to 1 and pointer(n+ 1) to m+ 1.

• What are the advantages of this representation?

11

IE411 Lecture 2 12

Reverse Star

• Similar to a forward start except that arcs are sequenced starting with
arcs incoming from node 1.

• The two representations can be maintained side-by-side if necessary.

12

IE411 Lecture 2 13

Miscellaneous Issues

• Parallel Arcs

– Why would we need parallel arcs?
– Which representation(s) could accommodate them?

• Undirected Network

– What needs to change?
∗ Node-Arc Incidence Matrix
∗ Node-Node Adjacency Matrix
∗ Adjacency List

– What needs to happen when we update (i, j)?

13

IE411 Lecture 2 14

Summary of Representations

Representation Storage Space Features
Incidence Matrix nm 1. Space inefficient

2. Expensive to manipulate
3. MCFP constraint matrix

Adjacency Matrix kn2 1. Suited to dense networks
2. Easy to implement

Adjacency List k1n+ k2m 1. Space efficient
2. Efficient to manipulate
3. Suited to dense and sparse

Forward Star k3n+ k4m 1. Space efficient
2. Efficient to manipulate
3. Suited to dense and spare

Table 1: From Ahuja et al. Figure 2.25

14

