Practice Problems

Work through the odd-numbered problems 1-29. Once you have completed the problem set, check your answers.

Answers

1. (a) –3/4 (b) 1/2 (c) 0 (d) 2 (e) undefined

3. (a) \dfrac{4}{3} (b) \dfrac{ –9}{5} (c) x + 2 (if x ≠ 2) (d) 4 + h (if h ≠ 0) (e) a + x (if a ≠ x)

5. (a) t = 5: \dfrac{5000}{1500}  = \dfrac{10}{3}    , t = 10: \dfrac{5000}{3000}  =\dfrac{5}{3}   ,  t = 20:  \dfrac{5000}{6000} 
    =\dfrac{5}{6}

(b) any t > 0: \dfrac{5000}{300t}    = \dfrac{50}{3t}

(c) decreasing, since the numerator remains constant at 5000 while the denominator increases.

7. The restaurant is 4 blocks south and 2 blocks east. The distance is \sqrt{4^2 + 2^2}  =\sqrt{20}  ≈ 4.47 blocks.

9. y = \sqrt{20^2 – 4^2}  = \sqrt{384}  ≈ 19.6 feet, m = \dfrac{\sqrt{384}}{4}    ≈ 4.9 .  tan( q ) = \dfrac{\sqrt{384}}{4}    ≈ 4.9 so q  ≈ 1.37   (≈ 78.5^o).

11. The equation of the line through P = (2,3) and Q = (8,11) is y – 3 =\dfrac{8}{6} (x – 2) or 6y – 8x = 2. Substituting x = 2a + 8(1–a) = 8 – 6a and y = 3a
    + 11(1–a) = 11 – 8a into the equation for the line, we get 6(11 – 8a) –8(8 – 6a) = 66 – 48a –64 + 48a which equals 2 for every value of a, so the point with x = 2a + 8(1–a) and y = 3a + 11(1–a) is on the line through P and Q for every value of a.

The  Dist(P,Q) =\sqrt{6^2 + 8^2}   = 10. Dist(P,R)  =  \sqrt{(8–6a – 2)^2 + (11–8a – 3)^2}

=\sqrt{(6 – 6a)^2 + (8 – 8a)^2}   = \sqrt{6^2(1–a)^2 + 8^2(1–a)^2}    = \sqrt{100(1–a)^2}   =  10 . |1–a|  =  |1–a| . Dist(P,Q).


13. (a) m_1 \cdot m_2 = (1)(-1) = -1 so the lines are perpendicular.

(b) Because 20 units of x-values are physically wider on the screen than 20 units of y-values.

(c) Set the window so (xmax - xmin) ≈ 1.7 (ymax - ymin).


15. (a) y – 5 = 3(x – 2) or y = 3x – 1.

(b) y – 2 = –2(x – 3) or y = 8 – 2x

(c) y – 4 = –\dfrac{1}{2}(x – 1) or y = –\dfrac{1}{2} x + \dfrac{9}{2}


17. (a) y – 5 = \dfrac{3}{2}(x–2) or y = \dfrac{3}{2} x + 2

(b) y – 2 = \dfrac{3}{2}(x+1) or y = \dfrac{3}{2} x + \dfrac{7}{2}

(c)  x = 3.


19. The distance between the centers is \sqrt{6^2 + 8^2}   = 10.

(a) 10–2–4 = 4

(b) 10–2–7 = 1

(c) 0 (they intersect)

(d) 15–10–3 = 2

(e) 12–10–1 = 1.


21. Find Dist( P,C ) = \sqrt{ (x–h)^2 + (y–k)^2}, and compare the value to r: P is

inside the circle              if Dist( P,C ) < r

on the circle                   if Dist( P,C ) = r

outside the circle          if Dist( P,C ) > r


23. A point P =(x,y) lies on the circle if and only if its distance from C = (h,k) is r : Dist( P,C ) = r. So P is on the circle if and only if \sqrt{(x–h)^2 + (y–k)^2}   = r or  (x–h)^2 + (y–k)^2 = r^2.


25. (a) slope is  –\dfrac{5}{12}

(b) undefined (vertical line)

(c) \dfrac{12}{5}

(d) 0 (horizontal line)


27. (a) distance ≈ 2.22.

(b) Distance ≈ 2.24.

(c) (by inspection) 3 units which occurs at the point (5, 3).


29. (a) If B ≠ 0, we may solve for y: y = – \dfrac{A}{B} x + \dfrac{C}{B}. The slope is the coefficient of x: m = –\dfrac{A}{B}.

(b) The required slope is B/A (the negative reciprocal of –A/B) so the equation is y = \dfrac{B}{A} x or Bx–Ay = 0.

(c) Solve { Ax + By = C, Bx – Ay = 0 } to get x = \dfrac{AC}{A^2 + B^2} and y = \dfrac{BC}{A^2 + B^2}.

(d) Distance =  \sqrt { (\dfrac{AC}{(A^2 + B^2)})^2  + (\dfrac{BC}{A^2 + B^2})^2} = \sqrt{\dfrac{A^2C^2}{(A^2 + B^2)^2} + \dfrac{B^2C^2}{(A^2 + B^2)^2}}

 = \sqrt{\dfrac{(A^2 + B^2)C^2}{(A^2 + B^2)^2}}    = \sqrt{\dfrac{C^2}{A^2 + B^2}}     =  \dfrac{| C |}{\sqrt{A^2 + B^2}}