Practice Problems

Work through the odd-numbered problems 1-31. Once you have completed the problem set, check your answers.

Answers

1.

(a) ≈ – 18.

(b) –2.2

(c) If T= 11oC, WCI = \left\{ \begin{array} {ll}11 & \text { if } 0 ≤ v ≤ 6.5  \\33 - \dfrac{10.45+5.29\sqrt v - 0.279v}{22} (22) & \text { if } 6.5 ≤ v ≤ 72 \\ -2.2 & \text { if } 72 < v \end{array} \right.


3. g(0)=3, g(1)=1, g(2)=2, g(3)=3, g(4)=1, g(5)=1. g(x)= \left\{ \begin{array} {lll} 3 - x & \text { if } x < 1   \\ x & \text { if } 1 ≤ x ≤ 3 \\ 1 & \text { if } x > 3 \end{array} \right.


5.

(a) f( f(1) ) = 1, f( g(2) ) = 2, f( g(0) ) = 2, f( g(1) ) = 3
(b) g( f(2) ) = 0, g( f(3) ) = 1, g( g(0) ) = 0, g( f(0) ) = 0
(c) f (h(3) ) = 3, f( h(4) ) = 2, h( g(0) ) = 0, h( g(1) ) = –1

7. (a)

x -1 0 1 2 3 4
f(x) 3 3 -1 0 1 1
g(x) -2 0 1 2 3 4
h(x) -3 -2 -1 0 1 2

(b) f( g(1) ) = –1, f( h(1) ) = 3, h( f(1) ) = –3, f( f(2) ) = 3, g( g(3.5) ) = 3

(c) See Fig. 0.4P7 for the graphs of f, g, and h.



9.

 L(d) = \left\{ \begin{array} {llll}
    England & \text { if d = Mon. or Tue. } 0 ≤ v ≤ 6.5  \\
    France & \text { if  d = Wed.} 6.5 ≤ v ≤ 72 \\ 
    Germany & \text { if  d = Thur. or Fri.} 72 < v \\
    Italy & \text { if d = Sat. or Sun.} \end{array} \right.



11. f(x)= \left\{ \begin{array} {ll} x^2 & \text { if } x< 2 \\ x - 1 & \text { if } x > 2  \end{array} \right.

13. (a) B(1) = 1.f(1) = 1. \dfrac{1}{1}  = 1,
           B(2) = 2.f(2) = 2. \dfrac{1}{2}  = 1,
           B(3) = 3.f(3) = 3. \dfrac{1}{3}  = 1.

(b) For x > 0, B(x) = x.f(x) = x. \dfrac{1}{x}    =
        1.

15. See Fig. 0.4P15.



17. (a) f( g(x) ) = 6x + 2 + 3A, g( f(x) ) = g( 3x+2 ) = 6x + 4 + A. If f(g(x)) = g(f(x)), then A = 1.

(b) f(g(x)) = 3Bx – 1, g(f(x)) = 3Bx + 2B – 1. If f(g(x)) = g(f(x)), then B = 0.

19. See Fig. 0.4P19 for the graph of f(x) = x – [ x ] = x – INT(x).



21.  f(x) = [ 1.3 + 0.5.sin(x) ] works. The value of 0.5 < A < 1.5 in f(x) = [ A + 0.5.sin(x) ] determines the relative lengths of the long and short parts of the pattern..

23. (a) g(1) = 1, g(2) = 1, g(3) = 0, g(4) = –1. Now graph g


25. ≈ 0.739 starting with x = 1, 2, 10, or any value.


27. f(x) = (x^2 + 1)/(2x). (note that this is the corrected version of the function f)
f(1) = 2/2 = 1.
f(0.5) = 1.25, f(1.25) = 1.025, f(1.025) ≈ 1.0003049 , f(1.0003049) ≈ 1.000000046, ...
f(4) = 2.125, f(2.125) ≈ 1.297794, f(1.297794) ≈ 1.034166, f(1.034166) ≈ 1.000564, ...

29.

(a) f(2) = 14/3 ≈ 4.7, f( 14/3 ) = 50/9 ≈ 5.6, f(50/9) = 158/27 ≈ 5.85, f(158/27) = 482/81 ≈ 5.95

  f(4) = 16/3 ≈ 5.3, f(16/3) = 52/9 ≈ 5.8, f(52/9) = 160/27 ≈ 5.93, f(160/27) = 484/81 ≈ 5.975
  f(6) = 6.
(b) c = 6.
(c) Solve c = g(c) = c/3 + A to get 3c = c + 3A and 2c
        = 3A so c =\dfrac{3A}{2} is a fixed point of g.


31. On your own.