Practice Problems

Work through the odd-numbered problems 1-55. Once you have completed the problem set, check your answers.


Section 3.3

1. (a) Cont. at 0, 1, 2, 3, 5 (b) Diff. at 0, 3, 5


3.

\begin{array}{c|c|c|c|c|l|l|l|l}\mathrm{x} & \mathrm{f}(\mathrm{x}) & \mathrm{f}^{\prime}(\mathrm{x}) & \mathrm{g}(\mathrm{x}) & \mathrm{g} '(\mathrm{x}) & \mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x}) & \mathrm{D}(\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})) & \mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x}) & \mathrm{D}(\mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x})) \\\hline 0 & 2 & 3 & 1 & 5 & \mathbf{2} & \mathbf{1 3} & \mathbf{2} & -7 \\1 & -3 & 2 & 5 & -2 & \mathbf{- 1 5} & \mathbf{1 6} & \mathbf{- 3} / \mathbf{5} & \mathbf{4} / \mathbf{2 5} \\2 & 0 & -3 & 2 & 4 & \mathbf{0} & -\mathbf{6} & \mathbf{0} & -\mathbf{3} / \mathbf{2} \\3 & 1 & -1 & 0 & 3 & \mathbf{0} & \mathbf{3} & \text { undef } & \text { undef }\end{array}


5. 

\begin{array}{l|c|l|c|c|c|l|l|l|l|l}\mathrm{x} & \mathrm{f}(\mathrm{x}) & \mathrm{f}^{\prime}(\mathrm{x}) & \mathrm{g}(\mathrm{x}) & \mathrm{g}^{\prime}(\mathrm{x}) & \mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x}) & \mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x}) & \mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x}) & \mathrm{D}(\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})) & \mathbf{D}(\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})) & \mathrm{D}(\mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x})) \\\hline 1 & 3 & -2 & 2 & 2 & 5 & 6 & 3 / 2 & 0 & 2 & -10 / 4 \\2 & 1 & 0 & 3 & 1 / 2 & 4 & 3 & 1 / 3 & 1 / 2 & 1 / 2 & -1 / 18 \\3 & 2 & 1 & 2 & -1 & 4 & 4 & 1 & 0 & 0 & 1\end{array}


7. (a) \quad D((x-5)(3 x+7))=(x-5) 3+(3 x+7) 1=6 x-8

(b) \quad  D\left(3 x^{2}-8 x-35\right)=6 x-8, the same result as in (a)


9. \frac{\mathrm{d}}{\mathrm{dx}} \frac{\cos (\mathrm{x})}{\mathrm{x}^{2}}=\frac{\mathrm{x}^{2}(-\sin (\mathrm{x}))-(\cos (\mathrm{x}))(2 \mathrm{x})}{\left(\mathrm{x}^{2}\right)^{2}}=-\frac{\mathrm{x} \sin (\mathrm{x})+2 \cos (\mathrm{x})}{\mathrm{x}^{3}}


11. D\left(\sin ^{2}(x)\right)=\sin (x) \cos (x)+\sin (x) \cos (x)=2 \sin (x) \cos (x), D\left(\cos ^{2}(x)\right)=\cos (x)(-\sin (x))+\cos (x)(-\sin (x))=-2 \sin (x) \cos (x)


13. \mathrm{f}(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{b} \mathrm{x}+\mathrm{c} so \mathrm{f}(0)=\mathrm{c} . Then \mathrm{f}(0)=0 implies that \mathrm{c}=0 f^{\prime}(x)=2 a x+b so f^{\prime}(0)=b and f^{\prime}(0)=0 implies that b=0

Finally, f^{\prime}(10)=20 a+b=20 a so f^{\prime}(10)=30 implies that 20 a=30 and a=3 / 2. f(x)=\frac{3}{2} x^{2}+0 x+0 has f(0)=0, f^{\prime}(0)=0, and f^{\prime}(10)=30


15. Their graphs are vertical shifts of each other, and their derivatives are equal.


17. \mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})=\mathrm{k} so \mathrm{D}(\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x}))=\mathrm{D}(\mathrm{k})=0 and \mathrm{f}(\mathrm{x}) \mathrm{g}^{\prime}(\mathrm{x})+\mathrm{g}(\mathrm{x}) \mathrm{f}^{\prime}(\mathrm{x})=0.

If f(x) \neq 0 and g(x) \neq 0, then \quad \frac{f^{\prime}(x)}{f(x)}=-\frac{g^{\prime}(x)}{g(x)}


19. \mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}-5 so \mathrm{f}^{\prime}(1)=-3 . \mathrm{f}^{\prime}(\mathrm{x})=0 if \mathrm{x}=5 / 2.


21. \mathrm{f}^{\prime}(\mathrm{x})=3+2 \sin (\mathrm{x}) so \mathrm{f}^{\prime}(1)=3+2 \sin (1) \approx 4.68 . \mathrm{f}^{\prime}(\mathrm{x}) never equals 0 since \sin (\mathrm{x}) never equals -3 / 2.


23. \mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}+18 \mathrm{x}=3 \mathrm{x}(\mathrm{x}+6) so \mathrm{f}^{\prime}(1)=21 . \mathrm{f}^{\prime}(\mathrm{x})=0 if \mathrm{x}=0 or -6.


25. \mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}+4 \mathrm{x}+2 so \mathrm{f}^{\prime}(1)=9 . \mathrm{f}^{\prime}(\mathrm{x})=0 for no values of \mathrm{x} (the discriminant \left.4^{2}-4(3)(2) < 0\right).


27. f^{\prime}(x)=x^{\cdot} \cos (x)+\sin (x) so f^{\prime}(1)=1 \cdot \cos (1)+\sin (1) \approx 1.38 . The graph of f^{\prime}(x) crosses the x-a x is infinitely often. The root of f^{\prime} at x=0 is easy to see (and verify). Other roots of f ', such as near \mathrm{x}=2.03 and 4.91 and -2.03, can be found numerically using the Bisection algorithm or graphically using the "zoom" or "trace" features on some calculators.


29. \mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}+2 \mathrm{Ax}+\mathrm{B} . The graph of \mathrm{y}=\mathrm{f}(\mathrm{x}) has two distinct "vertices" if \mathrm{f}^{\prime}(\mathrm{x})=0 for two distinct values of x . This occurs if the discriminant of 3 x^{2}+2 A x+B is greater than 0:(2 A)^{2}-4(3)(B)>0


31. Everywhere except at \mathrm{x}=-3.


33. Everywhere except at \mathrm{x}=0 and 3.


35. Everywhere except at \mathrm{x}=1


37. Everywhere. The only possible difficulty is at \mathrm{x}=0, and the definition of the derivative gives \mathrm{f}^{\prime}(0)=1. The derivatives of the "two pieces" of \mathrm{f} match at \mathrm{x}=0 to give a differentiable function there.


39. Continuity of \mathrm{f} at \mathrm{x}=1 requires \mathrm{A}+\mathrm{B}=2 . The "left derivative" \mathrm{f} at \mathrm{x}=1 is \mathrm{D}(\mathrm{Ax}+\mathrm{B})=\mathrm{A} and the "right derivative" of \mathrm{f} at \mathrm{x}=1 is 3\left(\right. if \mathrm{x}>1 then \left.\mathrm{D}\left(\mathrm{x}^{2}+\mathrm{x}\right)=2 \mathrm{x}+1\right) so to achieve differentiability A=3 and B=2-A=-1


41. \mathrm{h}(\mathrm{x})=128 \mathrm{x}-2.65 \mathrm{x}^{2} \mathrm{ft}.

(a) \mathrm{h}^{\prime}(\mathrm{x})=128-5.3 \mathrm{x} so \mathrm{h}^{\prime}(0)=128 \mathrm{ft} / \mathrm{sec}, \mathrm{h}^{\prime}(1)=122.7 \mathrm{ft} / \mathrm{sec}, and \mathrm{h}^{\prime}(2)=117.4 \mathrm{ft} / \mathrm{sec}.

(b) v(x)=h^{\prime}(x)=128-5.3 \times \mathrm{ft} / \mathrm{sec}.

(c) \mathrm{v}(\mathrm{x})=0 when \mathrm{x}=128 / 5.3 \approx 24.15 \mathrm{sec}.

(d) \mathrm{h}(24.15) \approx 1,545.66 \mathrm{ft}

(e) about 48.3 seconds: 24.15 up and 24.15 down


43. h(x)=v_{0} x-16 x^{2} ft.

(a) \mathrm{h}^{\prime}(\mathrm{x})=\mathrm{v}_{\mathrm{o}}-32 \mathrm{x} \mathrm{ft} / \mathrm{sec}

(b) Max height when \mathrm{x}=\mathrm{v}_{\mathrm{o}} / 32: max height =\mathrm{h}\left(\mathrm{v}_{\mathrm{o}} / 32\right)=\mathrm{v}_{\mathrm{o}}\left(\mathrm{v}_{\mathrm{o}} / 32\right)-16\left(\mathrm{v}_{\mathrm{o}} / 32\right)^{2}=\left(\mathrm{v}_{\mathrm{o}}\right)^{2} / 64 feet.

(c) Time aloft =2\left(\mathrm{v}_{\mathrm{o}} / 32\right)=\mathrm{v}_{\mathrm{o}} / 16 seconds.


45. (a) \left(\mathrm{v}_{\mathrm{o}}\right)^{2} / 64=6.5, so \mathrm{v}_{\mathrm{o}}=8 \sqrt{6.5} \approx 20.396 \mathrm{ft} / \mathrm{sec}.

(b) 2\left(\mathrm{v}_{\mathrm{o}} / 32\right)=\frac{8 \sqrt{6.5}}{16} \approx 1.27 seconds.

(c) Max height =\frac{\left(\mathrm{v}_{\mathrm{o}}\right)^{2}}{2 \mathrm{~g}}=\frac{(8 \sqrt{6.5})^{2}}{2(5.3)}=\frac{416}{10.6} \approx 39.25 feet.


47. (a) y^{\prime}=-\frac{1}{x^{2}} ; y^{\prime}(2)=-1 / 4 so y-1 / 2=(-1 / 4)(x-2) or y=(-1 / 4) x+1

(b) x-intercept at x=4, y-intercept at y=1

(c) \mathrm{A}=\frac{1}{2}( base )( height )=\frac{1}{2}(4)(1)=2.


49. Since (1,4) and (3,14) are on the parabola, we need a+b+c=4 and 9 a+3 b+c=14. Then, subtracting the first equation from the second, 8 a+2 b=10.

f^{\prime}(x) \equiv 2 a x+b so f^{\prime}(3)=6 a+b=9, the slope of y=9 x-13 . Now solve the system 8 a+2 b=10 and 6 a+b=9 to get a=2 and b=-3 . Then use a+b+c=4 to get c=5 . a=2, b=-3, c=5


51. (a) f(x)=x^3

(b) g(x)=x^{3}+1

(c) If \mathrm{h}(\mathrm{x})=\mathrm{x}^{3}+\mathrm{C} for any constant \mathrm{C}, then \mathrm{D}(\mathrm{h}(\mathrm{x}))=3 \mathrm{x}^{2}.


53. (a) For 0 \leq x \leq 1, f^{\prime}(x)=1 so f(x)=x+C. Since f(0)=0, we know C=0 and f(x)=x.

For 1 \leq x \leq 3, f^{\prime}(x)=2-x so f(x)=2 x-\frac{1}{2} x^{2}+K . Since f(1)=1, we know \mathrm{K}=-1 / 2 and \mathrm{f}(\mathrm{x})=2 \mathrm{x}-\frac{1}{2} \mathrm{x}^{2}-\frac{1}{2}

For 3 \leq x \leq 4, f^{\prime}(x)=x-4 so f(x)=\frac{1}{2} x^{2}-4 x+L. Since f(3)=1, we know L=17 / 2 and f(x)=\frac{1}{2} x^{2}-4 x+\frac{17}{2}

(b) This graph is a vertical shift, up 1 unit, of the graph in part (a).