Applied Maximum and Minimum Problems

Read this section to learn how to apply previously learned principles to maximum and minimum problems. Work through practice problems 1-3. There is no review for this section; instead, make sure to study the problems carefully to become familiar with applied maximum and minimum problems.

Practice Answers

Practice 1: \mathrm{V}(\mathrm{x})=\mathrm{x}(15-2 \mathrm{x})(7-2 \mathrm{x})=4 \mathrm{x}^{3}-44 \mathrm{x}^{2}+105 \mathrm{x}
\mathrm{V}^{\prime}(\mathrm{x})=12 \mathrm{x}^{2}-88 \mathrm{x}+105=(2 \mathrm{x}-3)(6 \mathrm{x}-35) which is defined for all \mathrm{x} so the only critical numbers are the endpoints x=0 and x=7 / 2 and the places where V' equals 0, at x=3 / 2 and x=35 / 6 (but 35 / 6 is not in the interval [0,7 / 2] so it is not practical for this applied problem).

The maximum volume must occur when \mathrm{x}=0, \mathrm{x}=3 / 2, or \mathrm{x}=7 / 2):

\mathrm{V}(0)=0 \cdot(15-2 \cdot 0) \cdot (7-2 \cdot 0)=0

\mathrm{V}\left(\frac{3}{2}\right)=\frac{3}{2} \cdot\left(15-2 \cdot \frac{3}{2}\right) \cdot\left(7-2 \cdot \frac{3}{2}\right)

=\frac{3}{2}(12)(4)=72 \max

\mathrm{V}\left(\frac{7}{2}\right)=\frac{7}{2} \cdot\left(15-2 \cdot \frac{7}{2}\right) \cdot\left(7-2 \cdot \frac{7}{2}\right)

=\frac{7}{2}(8)(0)=0

Fig. 31 shows the graph of \mathrm{V}(\mathrm{x}).

Fig. 31


Practice 2: (a) We have 80 feet of fencing. (See Fig. 32). Our assignment is to maximize the area of the garden: A=x \cdot y (two variables). Fortunately we have the constraint that x+y=80 so \mathrm{y}=80-\mathrm{x}, and our assignment reduces to maximizing a function of one variable:

maximize A=x \cdot y=x \cdot(80-x)=80 x-x^{2}.

A^{\prime}=80-2 x so A^{\prime}=0 when x=40.

\mathrm{A}^{\prime \prime}=-2 so \mathrm{A} is concave down, and \mathrm{A} has a maximum at x=40,

The maximum area is \mathrm{A}=40 \cdot 40=1600 square feet when \mathrm{x}=40 \mathrm{ft}. and \mathrm{y}=40 \mathrm{ft}. The maximum area garden is a square.

Fig. 32

(b) This is very similar to part (a) except we have \mathrm{F} feet of fencing instead of 80 feet. \mathrm{x}+\mathrm{y}=\mathrm{F} so \mathrm{y}=\mathrm{F}-\mathrm{x}, and we want to maximize \mathrm{A}=\mathrm{xy}=\mathrm{x}(\mathrm{F}-\mathrm{x})=\mathrm{Fx}-\mathrm{x}^{2} \mathrm{A}^{\prime}=\mathrm{F}-2 \mathrm{x} so \mathrm{A}^{\prime}=0 when \mathrm{x}=\mathrm{F} / 2 and \mathrm{y}=\mathrm{F} / 2. The maximum area is \mathrm{A}=\mathrm{F}^{2} / 4 square feet and that occurs when the garden is a square and half of the new fence is used on each of the two new sides.


Practice 3: Cost \mathrm{C}=5 (area of top) +3 (area of sides) +5 (area of bottom) =5\left(\pi \mathrm{r}^{2}\right)+3(2 \pi \mathrm{rh})+5\left(\pi \mathrm{r}^{2}\right)
so our assignment is to minimize \mathrm{C}=10 \pi \mathrm{r}^{2}+6 \pi \mathrm{rh}, a function of two variables \mathrm{r} and \mathrm{h}.

Fortunately we also have the constraint that volume =1000 \mathrm{in}^{3}=\pi \mathrm{r}^{2} \mathrm{~h} so \mathrm{h}=\frac{1000}{\pi \mathrm{r}^{2}}. Then \mathrm{C}=10 \pi \mathrm{r}^{2}+6 \pi \mathrm{r}\left(\frac{1000}{\pi \mathrm{r}^{2}}\right)=10 \pi \mathrm{r}^{2}+\frac{6000}{\mathrm{r}} so \mathrm{C}^{\prime}=20 \pi \mathrm{r}-\frac{6000}{\mathrm{r}^{2}}. \mathrm{C}^{\prime}=0 if 20 \pi \mathrm{r}-\frac{6000}{\mathrm{r}^{2}}=0 so 20 \pi \mathrm{r}^{3}=6000 and \mathrm{r}=\left(\frac{6000}{20 \pi}\right)^{1 / 3} \approx 4.57 in. Then \mathrm{h}=\frac{1000}{\pi \mathrm{r}^{2}} \approx \frac{1000}{\pi(4.57)^{2}} \approx 15.24 \mathrm{in}. (\mathrm{C}^{\prime \prime}=20 \pi+\frac{12000}{\mathrm{r}^{3}} > 0. for all \mathrm{r} > 0 so \mathrm{C} is concave up and we have found a minimum of C.)