Related Rates

Read this section to learn to connect derivatives to the concept of the rate at which things change. Work through practice problems 1-3.

Practice Problem Answers

Practice 1: The surface area of the cylinder is \mathrm{SA}=2 \pi \mathrm{rh}+2 \pi \mathrm{r}^{2}. From the Example, we know that \mathrm{h'}  =7 \mathrm{m} / \mathrm{s} and \mathrm{r}^{\prime}=3 \mathrm{~m} / \mathrm{s}, and we want to know how fast the surface area is changing when \mathrm{h}=5 \mathrm{~m} and \mathrm{r}=6 \mathrm{~m}.

\frac{\mathrm{d} \mathrm{SA}}{\mathrm{dt}}=2 \pi \mathrm{r}^{\cdot} \mathrm{h}^{\prime}+2 \pi \cdot \mathrm{r}^{\prime} \cdot \mathrm{h}+2 \pi \cdot 2 \mathrm{r} \cdot \mathrm{r}^{\prime}

=2 \pi(6 \mathrm{~m})(7 \mathrm{~m} / \mathrm{s})+2 \pi(3 \mathrm{~m} / \mathrm{s})(5 \mathrm{~m})+2 \pi(2 \cdot 6 \mathrm{~m})(3 \mathrm{~m} / \mathrm{s})=186 \pi \mathrm{m}^{2} / \mathrm{s}

\approx \mathbf{5 8 4 . 3 4} square meters per second. (Note that the units represent a rate of change of area.)


Practice 2: The volume of the cylinder is \mathrm{V}=( area of the bottom) (height )=\pi \mathrm{r}^{2} \mathrm{~h}. We are told that \mathrm{r}^{\prime}=-3 \mathrm{m} / \mathrm{s}, and that \mathrm{h}=5 \mathrm{~m}, \mathrm{r}=6 \mathrm{~m}, and \mathrm{h}^{\prime}=7 \mathrm{~m} / \mathrm{s}

\frac{\mathrm{d} \mathrm{V}}{\mathrm{dt}}=\pi \mathrm{r}^{2} \cdot \mathrm{h}^{\prime}+\pi \cdot 2 \mathrm{r} \cdot \mathrm{r} \cdot \mathrm{h}=\pi(6 \mathrm{~m})^{2}(7 \mathrm{~m} / \mathrm{s})+\pi(2 \cdot 6 \mathrm{~m})(-3 \mathrm{~m} / \mathrm{s})(5 \mathrm{~m})=72 \pi \mathrm{m}^{3} / \mathrm{s}

\approx 226.19 cubic meters per second. (Note that the units represent a rate of change of volume.)


Practice 3: Fig. 23 represents the situation described in this problem. We are told that \mathrm{L}^{\prime}=-30 \, \mathrm{ft} / \mathrm{min}. The variable \mathrm{F} represents the distance of the fish from the angler, and we are asked to find F', the rate of change of F when L =60 \, \mathrm{ft}.


Fortunately, the problem contains a right triangle so there is a formula (the Pythagorean formula) connecting F and L: F^{2}+10^{2}=L^{2} so

\mathrm{F}=\sqrt{\mathrm{L}^{2}-100}.

Then F^{\prime}=\frac{1}{2}\left(L^{2}-100\right)^{-1 / 2} \frac{\mathrm{d}\left(\mathrm{L}^{2}-100\right)}{\mathrm{dt}}=\frac{2 \mathrm{~L} \cdot \mathrm{L}^{\prime}}{2 \sqrt{\mathrm{L}^{2}-100}}.

When L=60 feet, F^{\prime}=\frac{2(60 \, \mathrm{ft})(-30 \, \mathrm{ft} / \mathrm{min})}{2 \sqrt{(60 \, \mathrm{ft})^{2}-(10 \, \mathrm{ft})^{2}}} \approx \frac{-3600 \, \mathrm{ft}^{2} / \mathrm{min}}{118.32 \, \mathrm{ft}} \approx-30.43 \, \mathrm{ft} / \mathrm{min}.

We could also find \mathrm{F} ' implicitly: \mathrm{F}^{2}=\mathrm{L}^{2}-100 so, differentiating each side,

2 \mathrm{~F} \cdot \mathrm{F}^{\prime}=2 \mathrm{~L} \cdot \mathrm{L}^{\prime} and \mathrm{F}^{\prime}=\frac{\mathrm{L} \cdot \mathrm{L}^{\prime}}{\mathrm{F}}

Then we could use the given values for \mathrm{L} and \mathrm{L} ' and value of \mathrm{F} (found using the Pythagorean formula) evaluate \mathrm{F'}.