The Chain Rule

Read this section to learn about the Chain Rule. Work through practice problems 1-8.

Chain Rule (Leibniz notation form)

If y is a differentiable function of u, and u is a differentiable function of x, then y is a differentiable function of x and \frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}.

Idea for a proof: \frac{\mathrm{dy}}{\mathrm{dx}}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta u} \cdot \frac{\Delta u}{\Delta x} \quad (if \left.\Delta u \neq 0\right)

\begin{align*}\begin{aligned}&=\left(\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta u}\right) \cdot\left(\lim _{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta x}\right) \quad u \text { is continuous, so } \Delta x \rightarrow 0 \text { implies } \Delta u \rightarrow 0 \\&=\frac{d y}{d u} \cdot \frac{d u}{d x}\end{aligned}\end{align*}


Although this nice short argument gets to the heart of why the Chain Rule works, it is not quite valid. If \mathrm{du} / \mathrm{d} \mathrm{x} \neq 0, then it is possible to show that \Delta \mathrm{u} \neq 0 for all very small values of \Delta \mathrm{x}, and the "idea for a proof" is a real proof. There are, however, functions for which \Delta \mathrm{u}=0 for lots of small values of \Delta \mathrm{x}, and these create problems for the previous argument. A justification which is true for ALL cases is much more complicated.

The symbol \frac{\mathrm{dy}}{\mathrm{du}} is a single symbol ( as is \frac{\mathrm{du}}{\mathrm{dx}} ), and we cannot eliminate du from the product \frac{\mathrm{dy}}{\mathrm{du}} \cdot \frac{\mathrm{du}}{\mathrm{dx}} in the Chain Rule. It is, however, perfectly fine to use the idea of eliminating du to help you remember the statement of the Chain Rule.


Example 3: \quad y=\cos \left(x^{2}+3\right) is y=\cos (u) with u=x^{2}+3. Find d y / d x

Solution: \mathrm{y}=\cos (\mathrm{u}) so \mathrm{dy} / \mathrm{du}=-\sin (\mathrm{u}) . \mathrm{u}=\mathrm{x}^{2}+3 so \mathrm{du} / \mathrm{dx}=2 \mathrm{x}. Finally, using the Chain Rule, \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy}}{\mathrm{du}} \cdot \frac{\mathrm{du}}{\mathrm{dx}}=-\sin (\mathrm{u}) \cdot 2 \mathrm{x}=-2 \mathrm{x} \cdot \sin \left(\mathrm{x}^{2}+3\right)


Practice 2: Find \mathrm{dy} / \mathrm{dx} for \mathrm{y}=\sin \left(4 \mathrm{x}+\mathrm{e}^{\mathrm{X}}\right)

There is also a composition of functions form of the Chain Rule. The notation is different, but it means precisely the same as the Leibniz form.