Practice Problems

Work through the odd-numbered problems 1-33. Once you have completed the problem set, check your answers.

Answers

1. (a) 2 \mathrm{x}+2 \mathrm{y}=200 so \mathrm{y}=100-\mathrm{x}. Maximize \mathrm{A}=\mathrm{x} \cdot \mathrm{y}=\mathrm{x} \cdot (100-\mathrm{x})=100 \mathrm{x}-\mathrm{x}^{2}. \mathrm{A}^{\prime}=100-2 \mathrm{x} and \mathrm{A}^{\prime}=0 when \mathrm{x}=50(\mathrm{y}=100-\mathrm{x}=50). \mathrm{A}^{\prime \prime}=-2 < 0 so \mathrm{x}=50 yields the maximum enclosed area. When \mathrm{x}=50 \mathrm{A}=50(100-50)=2500 square feet.
(b) 2 \mathrm{x}+2 \mathrm{y}=\mathrm{P} so \mathrm{y}=\mathrm{P} / 2-\mathrm{x}. Maximize \mathrm{A}=\mathrm{x} \cdot \mathrm{y}=\mathrm{x} \cdot(\mathrm{P} / 2-\mathrm{x})=(\mathrm{P} / 2) \mathrm{x}-\mathrm{x}^{2} A^{\prime}=P / 2-2 x and A^{\prime}=0 when x=P / 4 (then y=P / 2-x=P / 4 ). A^{\prime \prime}=-2 < 0 so \mathrm{x}=\mathrm{P} / 4 yields the maximum enclosed area.
This garden is a \mathrm{P} / 4 by \mathrm{P} / 4 square.
(c) 2 \mathrm{x}+\mathrm{y}=\mathrm{P} so \mathrm{y}=\mathrm{P}-2 \mathrm{x}. Maximize \mathrm{A}=\mathrm{xy}=\mathrm{x}(\mathrm{P}-2 \mathrm{x})=\mathrm{Px}-2 \mathrm{x}^{2} A^{\prime}=P-4 x and A^{\prime}=0 when x=P / 4 (then y=P-2 x=P / 2)
(d) A circle. A semicircle.

Fig. 3.5P1


3. (a) 120=2 x+5 y so y=24-\frac{2}{5} x. Maximize A=x y=x\left(24-\frac{2}{5} x\right)=24 x-\frac{2}{5} x^{2}. A^{\prime}=24-\frac{4}{5} x and A^{\prime}=0 when x=30 (then y=12). A^{\prime \prime}=-4 / 5 < 0 so \mathrm{x}=30 yields the maximum enclosed area. Area is (30 \mathrm{ft})(12 \mathrm{ft})=360 square feet.
(b) A circular pen divided into 4 equal stalls by two diameters shown in diagram (a) does a better job than a square with 400 square feet. If the radius is \mathrm{r}, then 4 \mathrm{r}+2 \pi \mathrm{r}=120 so \mathrm{r}=120 /(4+2 \pi) \approx 11.67.
The resulting enclosed area is \mathrm{A}=\pi \mathrm{r}^{2} \approx \pi(11.67)^{2} \approx 427.8 \mathrm{sq}. \mathrm{ft}.
The pen shown in diagram (b) does even better. If each semicircle has radius \mathrm{r}, then the figure uses 4 \sqrt{2} \mathrm{r}+4 \pi \mathrm{r}=120 feet of fence so \mathrm{r}=120 /(4 \sqrt{2}+4 \pi) \approx 6.585. The resulting enclosed area is \mathrm{A}=(\text { square })+(\text { four semicircles })=(2 \mathrm{r})^{2}+4\left(\frac{1}{2} \pi \mathrm{r}^{2}\right) \approx 445.90 \text { sq. } \mathrm{ft}


5. 2 \mathrm{x}+2 \mathrm{y}=10 so \mathrm{y}=5-\mathrm{x}
Maximize \mathrm{V}=\mathrm{xy}(10-2 \mathrm{x})=\mathrm{x}(5-\mathrm{x})(10-2 \mathrm{x})=50 \mathrm{x}-20 \mathrm{x}^{2}+2 \mathrm{x}^{3}
\mathrm{V}^{\prime}=50-40 \mathrm{x}+6 \mathrm{x}^{2}=2(3 \mathrm{x}-5)(\mathrm{x}-5) and \mathrm{V}^{\prime}=0 when \mathrm{x}=5 and \mathrm{x}=5 / 3. When \mathrm{x}=5, then \mathrm{V}=0, clearly not a maximum, so x=5 / 3. The dimensions of the box with the largest volume are 5 / 3,10 / 3, and 20 / 3.


7. (a) \mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}=100 so \mathrm{h}=\frac{100}{\pi \mathrm{r}}^{2}.

\begin{aligned}\text { Minimize } C &=2(\text { top area })+5(\text { bottom area })+3(\text { side area }) \\&=2\left(\pi r^{2}\right)+5\left(\pi r^{2}\right)+3(2 \pi r h)=7 \pi r^{2}+6 \pi r\left(\frac{100}{\pi r^{2}}\right)=7 \pi r^{2}+\frac{600}{r}\end{aligned}

C^{\prime}=14 \pi r-\frac{600}{r^{2}} and C^{\prime}=0 when r=\sqrt[3]{600 /(14 \pi)} \approx 2.39 (then \mathrm{h}=\frac{100}{\pi r^{2}} \approx 5.57)
(b) Let \mathrm{k}= top + bottom rate =2¢ + the bottom rate > 2¢ + 5¢ =7¢. Minimize \mathrm{C}=\mathrm{k} \pi \mathrm{r}^{2}+\frac{600}{\mathrm{r}}. \mathrm{C}^{\prime}=2 \mathrm{k} \pi \mathrm{r}-\frac{600}{\mathrm{r}^{2}} and \mathrm{C}^{\prime}=0 when \mathrm{r}=\sqrt[3]{600 /(2 \mathrm{k} \pi)}. If \mathrm{k}=8, then \mathrm{r} \approx 2.29
If \mathrm{k}=9, then \mathrm{r} \approx 2.20. If \mathrm{k}=10, then \mathrm{r} \approx 2.12. As the cost of the bottom material increases, the radius of the least expensive cylindrical can decreases: the least expensive can becomes narrower and taller


9. Time = distance/rate. Run distance = x(0 \leq x \leq 60 Why?) so run time =x / 8.
Swim distance =\sqrt{40^{2}+(60-x)^{2}} so swim time =\frac{1}{2} \sqrt{40^{2}+(60-x)^{2}} and the total time is

\begin{aligned}&T=\frac{x}{8}+\frac{1}{2} \sqrt{40^{2}+(60-x)^{2}} \\&T^{\prime}=\frac{1}{8}+\frac{1}{2} \frac{1}{2}\left(40^{2}+(60-x)^{2}\right)^{-1 / 2} \cdot 2 \cdot(60-x) \cdot(-1)=\frac{1}{8}-\frac{60-x}{2 \sqrt{40^{2}+(60-x)^{2}}}\end{aligned}

\mathrm{T}^{\prime}=0 when \mathrm{x}=60 \pm \frac{40}{\sqrt{15}}. The value \mathrm{x}=60+\frac{40}{\sqrt{15}} > 60 so the least total time occurs when \mathrm{x}=60-\frac{40}{\sqrt{15}} \approx 49.7 meters. In this situation, the lifeguard should run about 5 / 6 of the way along the beach before going into the water.


11. (a) Consider a similar problem with a new town D^* located at the "mirror image" of \mathrm{D} across the river (Fig. 3.5P11a). If the water works is built at any location \mathrm{W} along the river, then the distances are the same from \mathrm{W} to \mathrm{D} and to \mathrm{D}^{*}: dist (\mathrm{W}, \mathrm{D})=\operatorname{dist}\left(\mathrm{W}, \mathrm{D}^{*}\right).
Then \operatorname{dist}(\mathrm{C}, \mathrm{W})+\operatorname{dist}(\mathrm{W}, \mathrm{D})=\operatorname{dist}(\mathrm{C}, \mathrm{W})+\operatorname{dist}\left(\mathrm{W}, \mathrm{D}^{*}\right). The shortest distance from \mathrm{C} to \mathrm{D}^{*} is a straight line (Fig. 3.5P11b), and this straight line gives similar triangles with equal side ratios: \frac{x}{3}=\frac{10-x}{5} so \mathrm{x}=15 / 4=3.75 miles. A consequence of this "mirror image" view of the problem is that "at the best location \mathrm{W} the angle of incidence \alpha equals the angle of reflection \beta^{\prime  \prime}
(b) Minimize \mathrm{C}=3000 \operatorname{dist}(\mathrm{C}, \mathrm{W})+7000 \operatorname{dist}(\mathrm{W}, \mathrm{D})=3000 \sqrt{\mathrm{x}^{2}+9}+7000 \sqrt{(10-\mathrm{x})^{2}+25}. \mathrm{C}^{\prime}=\frac{3000 \mathrm{x}}{\sqrt{\mathrm{x}^{2}+9}}+\frac{-7000(10-\mathrm{x})}{\sqrt{(10-\mathrm{x})^{2}+25}} so \mathrm{C}^{\prime}=0 when \frac{3 \mathrm{x}}{\sqrt{\mathrm{x}^{2}+9}}=\frac{7(10-\mathrm{x})}{\sqrt{(10-\mathrm{x})^{2}+25}} and \mathrm{x} \approx 7.82 miles.
As it becomes relatively more expensive to build the pipe from a point \mathrm{W} on the river to \mathrm{D}, the cheapest route tends to shorten the distance from \mathrm{W} to \mathrm{D}.

Fig. 3.5P11


13. (a) Let \mathrm{x} be the length of one edge of the square end. Then \mathrm{V}=\mathrm{x}^{2}(108-4 \mathrm{x})=108 \mathrm{x}^{2}-4 \mathrm{x}^{3} \mathrm{V}^{\prime}=216 \mathrm{x}-12 \mathrm{x}^{2}=6 \mathrm{x}(18-\mathrm{x}) so \mathrm{V}^{\prime}=0 when \mathrm{x}=0 or \mathrm{x}=18. The dimensions of the greatest volume acceptable box with a square end are 18 by 18 by 36 inches: V=11,664\ \mathrm{in}^{3},
(b) Let x be the length of the shorter edge of the end. Then V=2 x^{2}(108-6 x)=216 x^{2}-12 x^{3} \mathrm{V}^{\prime}=432 \mathrm{x}-36 \mathrm{x}^{2}=36 \mathrm{x}(12-\mathrm{x}) so \mathrm{V}^{\prime}=0 when \mathrm{x}=0 or \mathrm{x}=12. The dimensions of the largest box acceptable box with this shape are 12 by 24 by 36 inches: V=10,368\ \mathrm{in}^{3}.
(c) Let x be the radius of the circular end. Then V=\pi x^{2}(108-2 \pi x)=108 \pi x^{2}-2 \pi^{2} x^{3}. \mathrm{V}^{\prime}=216 \pi \mathrm{x}-6 \pi^{2} \mathrm{x}^{2}=6 \pi \mathrm{x}(36-\pi \mathrm{x}) so \mathrm{V}^{\prime}=0 when \mathrm{x}=0 or \mathrm{x}=36 / \pi \approx 11.46 inches. The dimensions of the largest box acceptable box with a circular end are a radius of 36 / \pi \approx 11.46 and a length of 36 inches: \mathrm{V} \approx 14,851\ \mathrm{in}^{3}.


15. Without calculus: The area of the triangle is \frac{1}{2} (base)(height) =\frac{1}{2}(7) (height) and the height is maximum when the angle between the sides is a right angle.
Using calculus: Let \theta be the angle between the sides. Then the area of the triangle is
A=\frac{1}{2} (base) (height) =\frac{1}{2}(7) (height) =\frac{1}{2}(7)(10 \sin \theta)=35 \sin \theta. A^{\prime}=35 \cos \theta so A^{\prime}=0
when \theta=\pi / 2, and the triangle is a right triangle with sides 7 and 10.
Using either approach, the maximum area of the triangle is \frac{1}{2}(7)(10)=35 square inches, and the other side is the hypotenuse with length \sqrt{7^{2}+10^{2}}=\sqrt{149} \approx 12.2 inches.


17. (a) \mathrm{A}=2 \mathrm{x}\left(16-\mathrm{x}^{2}\right)=32 \mathrm{x}-2 \mathrm{x}^{3}. Then \mathrm{A}^{\prime}=32-6 \mathrm{x}^{2} so \mathrm{A}^{\prime}=0 when \mathrm{x}=\sqrt{32 / 6} \approx 2.31. The dimensions are 2 \sqrt{32 / 6} \approx 4.62 and 16-(\sqrt{32 / 6})^{2}=64 / 6 \approx 10.67.
(b) \mathrm{A}=2 \mathrm{x}\left(\sqrt{1-\mathrm{x}^{2}}\right). Then \mathrm{A}^{\prime}=2\left(\sqrt{1-\mathrm{x}^{2}}-\frac{\mathrm{x}^{2}}{\sqrt{1-\mathrm{x}^{2}}}\right) so \mathrm{A}^{\prime}=0 when \mathrm{x}=1 / \sqrt{2} \approx 0.707. The dimensions are 2(1 / \sqrt{2}) \approx 1.414 and 1 / \sqrt{2} \approx 0.707.
(c) The graph of |\mathrm{x}|+\mid \mathrm{yl}=1 is a "diamond" (a square) with corners at (1,0),(0,1),(-1,0) and (0,-1). For 0 \leq x \leq 1, A=2 x \cdot 2(1-x) so A=4 x-4 x^{2}. Then A^{\prime}=4-8 x and A^{\prime}=0 when \mathrm{x}=1 / 2. \mathrm{A}^{\prime \prime}=-8 so we have a local \max. The dimensions are 2(1 / 2)=1 and 2(1-1 / 2)=1.
(d) \mathrm{A}=2 \mathrm{x} \cos (\mathrm{x})(0 \leq \mathrm{x} \leq \pi / 2). Then \mathrm{A}^{\prime}=2 \cos (\mathrm{x})-2 \mathrm{x} \cdot \sin (\mathrm{x}) so \mathrm{A}^{\prime}=0 when \mathrm{x} \approx 0.86. The dimensions are 2(0.86)=1.72 and \cos (0.86) \approx 0.65.


19. A=6 \cdot\ \sin (\theta / 2) \cdot 6 \cdot\ \cos (\theta / 2)=36 \cdot \frac{1}{2}\ \sin (\theta)=18\ \sin (\theta) and this is a maximum when \theta=\pi / 2. Then the maximum area is \mathrm{A}=18\ \sin (\pi / 2)=18 square inches. (This problem is similar to problem 15.)


21. \mathrm{V}=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h} and \mathrm{h}=\sqrt{9-\mathrm{r}^{2}} so \mathrm{V}=\frac{1}{3} \pi \mathrm{r}^{2} \sqrt{9-\mathrm{r}^{2}}=\frac{\pi}{3} \sqrt{9 \mathrm{r}^{4}-\mathrm{r}^{6}}. Then \mathrm{V}^{\prime}=\frac{\pi}{6} \frac{36 r^{3}-6 r^{5}}{\sqrt{9 r^{4}-r^{6}}}, and \mathrm{V}^{\prime}=0 when 36 \mathrm{r}^{3}=6 \mathrm{r}^{5} so \mathrm{r}=\sqrt{6} \approx 2.45 inches and \mathrm{h}=\sqrt{9-\mathrm{r}^{2}}=\sqrt{3} \approx 1.73 inches.


23. Let \mathrm{n} \geq 10 be the number of passengers. The income is \mathrm{I}=\mathrm{n}(30-(\mathrm{n}-10))=40 \mathrm{n}-\mathrm{n}^{2}. The cost is C=100+6 n so the profit is P= Income - Cost =\left(40 n-n^{2}\right)-(100+6 n)=34 n-n^{2}-100.
P^{\prime}=34-2 \mathrm{n} and P^{\prime}=0 when \mathrm{n}=17.17 passengers on the flight maximize your profit. (This is an example of treating a naturally discrete variable, the number of passengers, as a continuous variable.)


25. Apply the result of problem 24 with R=f and E=g.


27. (i) Let \mathrm{D}= diameter of the base of the can, and let \mathrm{H}= the height of the can.
Then \theta=\arctan \left(\frac{\text { radius of can }}{\text { height of } \mathrm{cg}}\right)=\arctan \left(\frac{\mathrm{D} / 2}{\mathrm{H} / 2}\right).
For this can, \mathrm{D}=5 \mathrm{~cm} and \mathrm{H}=12 \mathrm{~cm} (sorry this should be in the statement of the problem) so \theta=\arctan (2.5 / 6)=\arctan (0.42) \approx 0.395 which is about 22.6^{\circ}. The can can be tilted about 22.6^{\circ} before it falls over.
(ii) C(x)=\frac{360+9.6 x^{2}}{60+19.2 x} so C^{\prime}(x)=\frac{(60+19.2 x)(19.2 x)-\left(360+9.6 x^{2}\right)(19.2)}{(0+19.2 x)^{2}} \cdot C^{\prime}(x)=0 when (19.2)\left(9.6 \mathrm{x}^{2}+60 \mathrm{x}-360\right)=0 so \mathrm{x}=3.75: the height of the cola is \mathrm{h}=3.75 \mathrm{~cm}.
(iii) \mathrm{C}(3.75)=3.75 (The center of gravity is exactly at the top edge of the cola. It turns out that when the \mathrm{cg} of a can and liquid system is as low as possible then the cg is at the top edge of the liquid.) Then \theta=\arctan (radius/(height of \mathrm{cg})=\arctan (2.5 / 3.75)=\arctan (0.667) \approx 0.588 which is about 33.7^{\circ}. In this situation, the can can be tilted about 33.7^{\circ} before it falls over.
(iv) Less.


29. (a) A (base)(height) = (1-x)\left(x^{2}\right)=x^{2}-x^{3} for 0 \leq x \leq 1. A^{\prime}=2 x-3 x^{2}=0 if x=2 / 3.
(Clearly the endpoints \mathrm{x}=0 and \mathrm{x}=1 will not give the largest area.) Then A=\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^{2}=\frac{4}{27}.
(b) A (base)(height) = (1-\mathrm{x})\left(\mathrm{Cx}^{2}\right)=\mathrm{Cx}^{2}-\mathrm{Cx}^{3} for 0 \leq \mathrm{x} \leq 1
\mathrm{A}^{\prime}=2 \mathrm{Cx}-3 \mathrm{Cx}^{2}=0 if \mathrm{x}=2 / 3. Then \mathrm{A}=\left(\frac{1}{3}\right)(\mathrm{C})\left(\frac{2}{3}\right)^{2}=\frac{4 \mathrm{C}}{27}.
(c) A=(base)(height) = (\mathrm{B}-\mathrm{x})\left(\mathrm{Cx}^{2}\right)=\mathrm{BCx}^{2}-\mathrm{Cx}^{3} for 0 \leq \mathrm{x} \leq 1.
\mathrm{A}^{\prime}=2 \mathrm{BCx}-3 \mathrm{Cx}^{2}=0 if \mathrm{x}=\frac{2}{3} \mathrm{~B}. Then \mathrm{A}=\left(\frac{\mathrm{B}}{3}\right)(\mathrm{C})\left(\frac{2 \mathrm{~B}}{3}\right)^{2}=\frac{4}{27} \mathrm{~B}^{3} \mathrm{C}.


31. (a) \mathrm{y}=20-\frac{20}{50} \mathrm{x} \cdot \mathrm{A} = (base)height) = \mathrm{xy}=\mathrm{x}\left(20-\frac{2}{5} \mathrm{x}\right)=20 \mathrm{x}-\frac{2}{5} \mathrm{x}^{2}. \mathrm{A}^{\prime}=20-\frac{4}{5} \mathrm{x}=0 when \mathrm{x}=25. Then \mathrm{y}=10 and Area = 250.
(b) \mathrm{y}=\mathrm{H}-\frac{\mathrm{H}}{\mathrm{B}} \mathrm{x}. \mathrm{A} = (base)height) = \mathrm{x}\left(\mathrm{H}-\frac{\mathrm{H}}{\mathrm{B}} \mathrm{x}\right)=\mathrm{Hx}-\frac{\mathrm{H}}{\mathrm{B}} \mathrm{x}^{2}. A^{\prime}=H-\frac{2 H}{B} x=0 when x=\frac{B}{2}. Then y=\frac{H}{2} and Area = \frac{B H}{4}.


33. F = \operatorname{cost} = (top cost) + (bottom) + (sides) = \left(\pi r^{2}\right) A+\left(\pi r^{2}\right) B+(2 \pi r h) C But we know \mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h} so \mathrm{h}=\frac{\mathrm{V}}{\pi \mathrm{r}^{2}} so \mathrm{F}=\pi \mathrm{r}^{2}(\mathrm{~A}+\mathrm{B})+\frac{2 \mathrm{CV}}{\mathrm{r}}.
Then F^{\prime}=2 \pi r(A+B)-\frac{2 C V}{r^{2}}=0 when r=\sqrt[3]{\frac{C V}{\pi(A+B)}}. Now you can find \mathrm{h} and F.