Infinite Limits and Asymptotes

Read this section to learn how to use and apply infinite limits to asymptotes. Work through practice problems 1-8.

Practice Answers

Practice 1: As \mathrm{x} becomes arbitrarily large, the values of \mathrm{f}(\mathrm{x}) approach 3 and the values of \mathrm{g}(\mathrm{x}) approach 0.


Practice 2: \lim \limits_{x \rightarrow \infty} \frac{3 x+4}{x-2}=3 and \lim \limits_{x \rightarrow \infty} \frac{\cos (5 x)}{2 x+7}=0.


Practice 3: The completed table is shown in Fig. 12.

\begin{array}{r|c|c}x & \frac{6 x+7}{3-2 x} & \frac{\sin (3 x)}{x} \\\hline 10 & -3.94117647 & -0.09880311 \\200 & -3.04030227 & 0.00220912 \\5000 & -3.00160048 & 0.00017869 \\20,000 & \begin{array}{c}-3.00040003\end{array} & 0.00004787 \\\downarrow & \downarrow \\& -3 & 0\end{array}

Fig. 12


Practice 4: If x > \sqrt{10} \approx 3.162, then f(x)=\frac{1}{x^{2}} < 0.1.
If x > \sqrt{1000} \approx 31.62, then f(x)=\frac{1}{x^{2}} < 0.001.
If x > \sqrt{1 / E}, then f(x)=\frac{1}{x^{2}} < E.


Practice 5 :

(a) \lim \limits_{x \rightarrow 2^{+}} \frac{7}{2-x}=-\infty.
As x \rightarrow 2^{+} the values 2-x \rightarrow 0, and x > 2 so 2-x < 0: 2-x takes small negative values.
Then the values of \frac{7}{2-x}=\frac{7}{\text { small negative values }} are large negative values so we represent the limit as " -\infty ".
(b) \lim \limits_{x \rightarrow 2^{+}} \frac{3 x}{2 x-4}=+\infty.
As x \rightarrow 2^{+} the values of 2 x-4 \rightarrow 0, and x > 2 so 2 x-4 > 0: 2 x-4 takes small positive values. As x \rightarrow 2^{+} the values of 3 x \rightarrow+6.
Then the values of \frac{3 x}{2 x-4}=\frac{\text { values near }+6}{\text { small positive values }} are large positive values so we represent the limit as " +\infty ".
(c) \lim \limits_{x \rightarrow 2^{+}} \frac{3 x^{2}-6 x}{x-2}=6.
As x \rightarrow 2^{+}, the values of 3 x^{2}-6 x \rightarrow 0 and x-2 \rightarrow 0 so we need to do more work. The numerator can be factored 3 \mathrm{x}^{2}-6 \mathrm{x}=3 \mathrm{x}(\mathrm{x}-2) and then the rational function can be reduced (since x \rightarrow 2 we know x \neq 2): \lim \limits_{x \rightarrow 2^{+}} \frac{3 x^{2}-6 x}{x-2}=\lim \limits_{x \rightarrow 2^{+}} \frac{3 x(x-2)}{x-2}=\lim \limits_{x \rightarrow 2^{+}} 3 x=6


Practice 6 :

(a) f(x)=\frac{x^{2}+x}{x^{2}+x-2}=\frac{x(x+1)}{(x-1)(x+2)}.
f has vertical asymptotes at \mathrm{x}=1 and \mathrm{x}=-2.
(b) g(x)=\frac{x^{2}-1}{x-1}=\frac{(x+1)(x-1)}{x-1}.
The value x=1 is not in the domain of g. If x \neq 1, then g(x)=x+1 \mathrm{g} has a "hole" when \mathrm{x}=1 and no vertical asymptotes.


Practice 7: \mathrm{g}(\mathrm{x})=2 \mathrm{x}-3+\frac{2}{\mathrm{x}+1}.
\mathrm{g} has a vertical asymptote at \mathrm{x}=-1.
\mathrm{g} has no horizontal asymptotes.
\lim \limits_{x \rightarrow \infty} \frac{2}{x+1}=0 so \mathrm{g} has the linear asymptote \mathrm{y}=2 \mathrm{x}-3.

Practice 8 :

f(x)=x^{2}+\frac{2 \cdot \sin (x)}{x}.
f is not defined at x=0, so f has a vertical asymptote or a "hole" when x=0.
\lim \limits_{x \rightarrow 0} x^{2}+\frac{2 \cdot \sin (x)}{x}=0+2=2 so f has a "hole" when x=0.
\lim \limits_{x \rightarrow \infty} \frac{2 \cdot \sin (x)}{x}=0 so \mathrm{f} has the nonlinear asymptote \mathrm{y}=\mathrm{x}^{2}.