Moore's Law: Fast, Cheap Computing and What It Means for the Manager

Moore's Law, named for the co-founder of Intel Gordon Moore, defines expected advances in the need for data storage over time. In reality, it defines much more, beyond simply data storage. Read this chapter and attempt the exercises to gain a broader understanding of the importance and costs associated with Information Systems.

The Death of Moore’s Law?

KEY TAKEAWAYS

  • As chips get smaller and more powerful, they get hotter and present power-management challenges. And at some, point Moore's Law will stop because we will no longer be able to shrink the spaces between components on a chip.
  • Multicore chips use two or more low-power calculating "cores" to work together in unison, but to take optimal advantage of multicore chips, software must be rewritten to "divide" a task among multiple cores.
  • 3-D transistors are also helping extend Moore's Law by producing chips that require less power and run faster.
  • New materials may extend the life of Moore's Law, allowing chips to get smaller, still. Entirely new methods for calculating, such as quantum computing, may also dramatically increase computing capabilities far beyond what is available today.