Practice Problems

Work through the odd-numbered problems 1-49. Once you have completed the problem set, check your answers.

Answers

1. \mathbf{D}(\ln (5 \mathrm{x}))=\frac{1}{5 \mathrm{x}} 5=\frac{1}{\mathrm{x}}


3. \mathbf{D}\left(\ln \left(\mathrm{x}^{\mathrm{k}}\right)\right)=\frac{1}{\mathrm{x}} \mathrm{k} \quad \mathrm{k} \mathrm{x}^{\mathrm{k}-1}=\frac{\mathrm{k}}{\mathrm{x}}


5. \quad \mathbf{D}(\ln (\cos (x)))=\frac{1}{\cos (x)}(-\sin (x))=-\tan (x)


7. \quad \mathbf{D}\left(\log _{2}(5 \mathrm{x})\right)=\frac{1}{5 \mathrm{x} \ln (2)}(5)=\frac{1}{\mathrm{x} \ln (2)}


9. \quad \mathbf{D}(\ln (\sin (x)))=\frac{1}{\sin (x)}(\cos (x))=\cot (x)


11. \quad \mathbf{D}\left(\log _{2}(\sin (x))\right)=\frac{1}{\sin (x)} \frac{1}{\ln (2)}(\cos (x))=\frac{\cot (x)}{\ln (2)}


13. \quad \mathbf{D}\left(\log _{5}\left(5^{\mathrm{x}}\right)\right)=\mathbf{D}(\mathrm{x})=1


15. \quad D(x \ln (3 x))=x \cdot \frac{1}{3 x} \cdot 3+\ln (3 x)=1+\ln (3 x)


17. \quad \mathrm{D}\left(\frac{\ln (\mathrm{x})}{\mathrm{x}}\right)=\frac{\mathrm{x} \cdot \frac{1}{\mathrm{x}}-\ln (\mathrm{x}) \cdot 1}{\mathrm{x}^{2}}=\frac{1-\ln (\mathrm{x})}{\mathrm{x}^{2}}


19. \mathbf{D}\left(\ln \left((5 \mathrm{x}-3)^{1 / 2}\right)\right)=\frac{1}{(5 \mathrm{x}-3)^{1 / 2}} \cdot \mathrm{D}\left((5 \mathrm{x}-3)^{1 / 2}\right)=\frac{1}{(5 \mathrm{x}-3)^{1 / 2}} \cdot \frac{1}{2} \cdot(5 \mathrm{x}-3)^{-1 / 2} \cdot \mathrm{D}(5 \mathrm{x}-3)=\frac{5}{2} \cdot \frac{1}{5 \mathrm{x}-3}


21. \frac{\mathrm{d}}{\mathrm{dw}}(\cos (\ln (\mathrm{w})))=\{-\sin (\ln (\mathrm{w}))\} \frac{1}{\mathrm{w}}=\frac{-\sin (\ln (\mathrm{w}))}{\mathrm{w}}


23. \quad \frac{\mathrm{d}}{\mathrm{dt}}(\ln (\sqrt{\mathrm{t}+1}))=\frac{1}{2(\mathrm{t}+1)}


25. \quad \mathbf{D}\left(5^{\sin (x)}\right)=5^{\sin (x)} \ln (5) \cos (x)


27. \frac{\mathrm{d}}{\mathrm{dx}} \ln (\sec (\mathrm{x})+\tan (\mathrm{x}))=\frac{1}{\sec (\mathrm{x})+\tan (\mathrm{x})}\left(\sec (\mathrm{x}) \tan (\mathrm{x})+\sec ^{2}(\mathrm{x})\right)=\sec (\mathrm{x})


29. \mathrm{f}(\mathrm{x})=\ln (\mathrm{x}), \mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{\mathrm{x}}. Let \mathrm{P}=(\mathrm{p}, \ln (\mathrm{p})). Then we must satisfy \mathrm{y}-\ln (\mathrm{p})=\frac{1}{\mathrm{p}}(\mathrm{x}-\mathrm{p}) with \mathrm{x}=0 and y=0:-\ln (p)=-1 so p=e and P=(e, 1).


31. p(t)=100\left(1+A e^{-t}\right)^{-1} \cdot \frac{\text { d }}{\text { dt }} p(t)=100(-1)\left(1+A e^{-t}\right)^{-2}\left(A e^{-t}(-1)\right)=\frac{100 \mathrm{Ae}^{-t}}{\left(1+A e^{-t}\right)^{2}}.


33. f(x)=8 \ln (x)+ any constant


35. f(x)=\ln (3+\sin (x))+ any constant


37. g(x)=\frac{3}{5} e^{5 x}+ any constant


39. f(x)=e^{x^{2}}+ any constant


41. \mathrm{h}(\mathrm{x})=\ln (\sin (\mathrm{x}))+ any constant


43. A: (t, 2 t+1), B:\left(t^{2}, 2 t^{2}+1\right)

(a) When \mathrm{t}=0, \mathrm{~A} is at (0,1) and \mathrm{B} is at (0,1). \quad When \mathrm{t}=1, \mathrm{~A} is at (1,3), \mathrm{B} is at (1,3)

(b) graph

(c) \quad \mathrm{dy} / \mathrm{d} \mathrm{x}=2 for each, since \mathrm{y}=2 \mathrm{x}+1.

(d) \mathrm{A}: \mathrm{dx} / \mathrm{dt}=1, \mathrm{dy} / \mathrm{dt}=2 so speed =\sqrt{1^{2}+2^{2}}=\sqrt{5}

B: \mathrm{dx} / \mathrm{dt}=2 \mathrm{t}, \mathrm{dy} / \mathrm{dt}=4 \mathrm{t} so speed =\sqrt{(2 \mathrm{t})^{2}+(4 \mathrm{t})^{2}}=2 \sqrt{5} \mathrm{t}. At \mathrm{t}=1, \mathrm{~B}^{\prime} \mathrm{s} speed is 2 \sqrt{5}

(e) This robot moves on the same path \mathrm{y}=2 \mathrm{x}+1, but it moves to the right and up for about 1.57 minutes, reverses its direction and returns to its starting point, then continues left and down for another 1.57 minutes, reverses, and continues to oscillate.


45. When \mathrm{t}=1, \mathrm{dx} / \mathrm{dt}=+, \mathrm{dy} / \mathrm{d} \mathrm{t}=-, \mathrm{dy} / \mathrm{d} \mathrm{x}=-. WHen \mathrm{t}=3, \mathrm{dx} / \mathrm{dt}=-, \mathrm{dy} / \mathrm{dt}=-, \mathrm{dy} / \mathrm{d} \mathrm{x}=+.


47. \begin{aligned} &x(t)=R(t-\sin (t)) \\ &y(t)=R(1-\cos (t)) \end{aligned}

(a) graph

(b) \mathrm{dx} / \mathrm{dt}=\mathrm{R}(1-\cos (\mathrm{t})), \mathrm{dy} / \mathrm{dt}=\mathrm{R} \sin (\mathrm{t}), so \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\sin (\mathrm{t})}{1-\cos (\mathrm{t})}.

When t=\pi / 2, then d x / d t=R, d y / d t=R so d y / d x=1 and speed =\sqrt{R^{2}+R^{2}}=R \sqrt{2}

When \mathrm{t}=\pi, \mathrm{dx} / \mathrm{dt}=2 \mathrm{R}, \mathrm{dy} / \mathrm{dt}=0 so \mathrm{dy} / \mathrm{d} \mathrm{x}=0 and speed =\sqrt{(2 \mathrm{R})^{2}+0}=2 \mathrm{R}.


49. (a) The ellipse \left(\frac{x}{3}\right)^{2}+\left(\frac{y}{5}\right)^{2}=1.

(b) The ellipse \left(\frac{x}{A}\right)^{2}+\left(\frac{y}{B}\right)^{2}=1 if A \neq 0 and B \neq 0

(c) (3 \cdot \cos (\mathrm{t}),-5 \cdot \sin (\mathrm{t})) works.

If A=0, the motion is oscillatory along the x-axis. If \mathrm{B}=0, the motion is oscillatory along the \mathrm{y}-axis.