Some Applications of the Chain Rule

Read this section to learn how to apply the Chain Rule. Work through practice problems 1-8.

Practice Problem Answers

Practice 1: \log _{9} 20=\frac{\log (20)}{\log (9)} \approx 1.3634165 \approx \frac{\ln (20)}{\ln (9)}, \log _{3} 20=\frac{\log (20)}{\log (3)} \approx 2.726833 \approx \frac{\ln (20)}{\ln (3)}

                   \log _{\pi} \mathrm{e}=\frac{\log (\mathrm{e})}{\log (\pi)} \approx \mathbf{0 . 8 7 3 5 6 8 5} \approx \frac{\ln (\mathrm{e})}{\ln (\pi)}=\frac{1}{\ln (\pi)}


Practice 2: \mathbf{D}\left(\log _{10}(\sin (\mathrm{x}))\right)=\frac{1}{\sin (\mathrm{x}) \cdot \ln (10)} \quad \mathbf{D}(\sin (\mathrm{x}))=\frac{\cos (\mathbf{x})}{\sin (\mathrm{x}) \cdot \ln (10)}

                 \mathbf{D}\left(\log _{\pi}\left(\mathrm{e}^{\mathrm{x}}\right)\right)=\frac{1}{\mathrm{e}^{\mathrm{x}} \cdot \ln (\pi)} \mathrm{D}\left(\mathrm{e}^{\mathrm{x}}\right)=\frac{\mathbf{e}^{\mathbf{x}}}{\mathrm{e}^{\mathrm{x}} \cdot \ln (\pi)}=\frac{1}{\ln (\pi)}


Practice 3: D\left(\sin \left(2^{x}\right)\right)=\cos \left(2^{x}\right) D\left(2^{x}\right)=\cos \left(2^{x}\right) \cdot 2^{x} \cdot \ln (2)

                 \frac{\mathbf{d}}{\mathbf{d t}} 3^{\left(\mathrm{t}^{2}\right)}=3^{\left(\mathrm{t}^{2}\right)} \ln (3) \mathbf{D}\left(\mathrm{t}^{2}\right)=3^{\left(\mathrm{t}^{2}\right)} \ln (3) \cdot 2 \mathrm{t}


Practice 4: \mathrm{T}=\frac{72}{1+\mathrm{h}}=\frac{72}{1+\mathrm{t}+\sin (\mathrm{t})}

                  \frac{\mathbf{d} \mathrm{T}}{\mathbf{d} \mathbf{t}}=\frac{(1+\mathrm{t}+\sin (\mathrm{t})) \cdot \mathbf{D}(72)-72 \cdot \mathbf{D}(1+\mathrm{t}+\sin (\mathrm{t}))}{(1+\mathrm{t}+\sin (\mathrm{t}))^{2}}=\frac{-72(1+\cos (\mathrm{t}))}{(1+\mathrm{t}+\sin (\mathrm{t}))^{2}}

                  When t=5, \frac{\mathbf{d} T}{\mathbf{d t}}=\frac{-72(1+\cos (5))}{(1+\mathrm{t}+\sin (5))^{2}} \approx-\mathbf{3 . 6 3 6 9 5}.


Practice 5: \mathrm{x}(\mathrm{t})=3 \cos (\mathrm{t}) so \mathrm{dx} / \mathrm{dt}=-3 \sin (\mathrm{t}) \cdot \mathrm{y}(\mathrm{t})=2 \sin (\mathrm{t})

                 so \mathrm{dy} / \mathrm{dt}=2 \cos (\mathrm{t}) \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy} / \mathrm{dt}}{\mathrm{dx} / \mathrm{dt}}=\frac{2 \cos (\mathrm{t})}{-3 \sin (\mathrm{t})}.

                  When t=\pi / 2, \frac{d y}{d x}=\frac{2 \cos (\pi / 2)}{-3 \sin (\pi / 2)}=\frac{2 \cdot 0}{-3 \cdot 1}=0 . (See Fig. 12)



Practice 6: When x=1 : pos., pos., pos. When x=3 : pos., neg., neg.


Practice 7: \mathrm{x}(\mathrm{t})=3 \sin (\mathrm{t}) and \mathrm{y}(\mathrm{t})=3 \cos (\mathrm{t}) so \mathrm{dx} / \mathrm{dt}=3 \cos (\mathrm{t}) and \mathrm{dy} / \mathrm{dt}=-3 \sin (\mathrm{t}). Then

speed =\sqrt{(\mathrm{dx} / \mathrm{dt})^{2}+(\mathrm{dy} / \mathrm{dt})^{2}}=\sqrt{(3 \cos (\mathrm{t}))^{2}+(-3 \sin (\mathrm{t}))^{2}}

             =\sqrt{9 \cdot \cos ^{2}(\mathrm{t})+9 \cdot \sin ^{2}(\mathrm{t})}=\sqrt{9}=3, a constant.


Practice 8: \mathrm{x}(\mathrm{t})=3 \cos (\mathrm{t}) and \mathrm{y}(\mathrm{t})=2 \sin (\mathrm{t}) so \mathrm{dx} / \mathrm{dt}=-3 \sin (\mathrm{t}) and \mathrm{dy} / \mathrm{dt}=2 \cos (\mathrm{t}) . Then

speed =\sqrt{(\mathrm{d} x / \mathrm{dt})^{2}+(\mathrm{dy} / \mathrm{dt})^{2}}=\sqrt{(-3 \sin (\mathrm{t}))^{2}+(2 \cos (\mathrm{t}))^{2}}=\sqrt{9 \sin ^{2}(\mathrm{t})+4 \cos ^{2}(\mathrm{t})}.

When t=0, the speed is \sqrt{9 \cdot(0)^{2}+4 \cdot(1)^{2}}=2.

When t=\pi / 2, the speed is \sqrt{9 \cdot(1)^{2}+4 \cdot(0)^{2}}=3 (faster).