Some Applications of the Chain Rule

Site: Saylor Academy
Course: MA005: Calculus I
Book: Some Applications of the Chain Rule
Printed by: Guest user
Date: Saturday, May 4, 2024, 2:32 PM

Description

Read this section to learn how to apply the Chain Rule. Work through practice problems 1-8.

Introduction

The Chain Rule will help us determine the derivatives of logarithms and exponential functions \mathrm{a}^{x} . We will also use it to answer some applied questions and to find slopes of graphs given by parametric equations.



Source: Dale Hoffman, https://s3.amazonaws.com/saylordotorg-resources/wwwresources/site/wp-content/uploads/2012/12/MA005-3.6-Some-Applications-of-the-Chain-Rule.pdf
Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License.

Derivatives of Logarithms

\mathbf{D}(\ln (x))=\dfrac{1}{x} \quad and \quad \mathbf{D}(\ln (g(x)))=\dfrac{\mathbf{g}^{\prime}(x)}{g(x)}


Proof: We know that the natural logarithm \ln (x) is the logarithm with base \mathrm{e}, and e^{\ln (x)}=x for x > 0

We also know that \mathbf{D}\left(\mathrm{e}^{\mathrm{X}}\right)=\mathrm{e}^{\mathrm{x}}, so using the Chain Rule we have \mathrm{D}\left(\mathrm{e}^{\mathrm{f}(\mathrm{x})}\right)=\mathrm{e}^{\mathrm{f}(\mathrm{x})} \mathbf{f}^{\prime}(\mathbf{x}) . Differentiating each side of the equation \mathrm{e}^{\ln (\mathrm{x})}=\mathrm{x}, we get that

D\left(e^{\ln (x)}\right)=D(x)

use \quad D\left(e^{f(x)}\right)=e^{f(x)} \cdot f^{\prime}(x) with f(x)=\ln (x)

e^{\ln (x)} \cdot D(\ln (x))=1

replace \mathrm{e}^{\ln (\mathrm{x})} with \mathrm{x}

x \cdot \mathbf{D}(\ln (x))=1

and solve for \mathbf{D}(\ln (x)) to get \mathbf{D}(\ln (x))=\frac{1}{x}.


The function \ln (\mathrm{g}(\mathrm{x})) is the composition of \mathrm{f}(\mathrm{x})=\ln (\mathrm{x}) with \mathrm{g}(\mathrm{x}), so by the Chain Rule,

D \big((\ln (g(x))=D(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)=\frac{1}{g(x)} \cdot g^{\prime}(x)=\frac{g^{\prime}(x)}{g(x)}\big).


Example 1: Find \mathbf{D}(\ln (\sin (x))) and \mathbf{D}\left(\ln \left(x^{2}+3\right)\right).

Solution: (a) Using the pattern \mathbf{D}\big((\ln (\mathrm{g}(\mathrm{x}))=\frac{\boldsymbol{g}^{\prime}(\mathrm{x})}{\mathrm{g}(\mathrm{x})} \big) with \mathrm{g}(\mathrm{x})=\sin (\mathrm{x}), then

\mathbf{D}(\ln (\sin (x)))=\frac{g^{\prime}(x)}{g(x)}=\frac{D(\sin (x))}{\sin (x)}=\frac{\cos (x)}{\sin (x)}=\cot (x)

(b) Using the pattern with \mathrm{g}(\mathrm{x})=\mathrm{x}^{2}+3, we have \mathrm{D}\left(\ln \left(\mathrm{x}^{2}+3\right)\right)=\frac{\mathrm{g}^{\prime}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}=\frac{2 \mathrm{x}}{\mathrm{x}^{2}+3}.

We can use the Change of Base Formula from algebra to rewrite any logarithm as a natural logarithm, and then we can differentiate the resulting natural logarithm.

Change of Base Formula for logarithms: \log _{\mathrm{a}} \mathrm{x}=\frac{\log _{\mathrm{b}} \mathrm{x}}{\log _{\mathrm{b}} \mathrm{a}} \quad for all positive \mathrm{a}, \mathrm{b} and \mathrm{x}.


Example 2: Use the Change of Base formula and your calculator to find \log _{\pi} 7 and \log _{2} 8.

Solution: \log _{\pi} 7=\frac{\ln 7}{\ln \pi} \approx \frac{1.946}{1.145} \approx 1.700 . (Check that \left.\pi^{1.7} \approx 7\right) \log _{2} 8=\frac{\ln 8}{\ln 2}=3.


Practice 1: Find the values of \log _{9} 20, \log _{3} 20 and \log _{\pi} \mathrm{e}.

Putting b=e in the Change of Base Formula, \log _{a} x=\frac{\log _{e} x}{\log _{e} a}=\frac{\ln x}{\ln a}, so any logarithm can be written as a natural logarithm divided by a constant. Then any logarithm is easy to differentiate.

\mathbf{D}\left(\log _{a}(x)\right)=\frac{1}{x \ln (a)} \quad and D\left(\log _{a}(f(x))\right)=\frac{f^{\prime}(x)}{f(x)} \cdot \frac{1}{\ln (a)}

The second differentiation formula follows from the Chain Rule.


Practice 2: Calculate \mathbf{D}\left(\log _{10}(\sin (x))\right) and \mathbf{D}\left(\log_{\pi}\left(\mathrm{e}^{\mathrm{x}}\right)\right).

The number \mathrm{e} might seem like an "unnatural" base for a natural logarithm, but of all the logarithms to different bases, the logarithm with base e has the nicest and easiest derivative. The natural logarithm is even related to the distribution of prime numbers. In 1896, the mathematicians Hadamard and Valle-Poussin proved the following conjecture of Gauss: (The Prime Number Theorem) For large values of \mathrm{x}, \{ number of primes less than \mathrm{x}\} \approx \frac{\mathrm{X}}{\ln (\mathrm{x})}.


Derivative of ax

 Once we know the derivative of \mathrm{e}^{\mathrm{X}} and the Chain Rule, it is relatively easy to determine the derivative of a^{x} for any a > 0.

D\left(a^{x}\right)=a^{x} \cdot \ln a \quad for a > 0.


Proof: If a > 0, then a^{x} > 0 and a^{x}=e^{\ln \left(a^{x}\right)}=e^{x \cdot \ln a}.

D\left(a^{x}\right)=D\left(e^{\ln \left(a^{x}\right)}\right)=D\left(e^{x \cdot \ln a}\right)=e^{x \cdot \ln a} \cdot D(x \cdot \ln a)=a^{x} \cdot \ln \mathbf{a}.


Example 3: Calculate \mathbf{D}\left(7^{\mathrm{X}}\right) and \frac{\mathbf{d}}{\mathbf{d t}}\left(2^{\sin (\mathrm{t})}\right)

Solution: (a) \mathrm{D}\left(7^{\mathrm{X}}\right)=7^{\mathrm{x}} \ln 7 \approx(1.95) 7^{\mathrm{x}}.

(b) We can write \mathrm{y}=2^{\sin (\mathrm{t})} as \mathrm{y}=2^{\mathrm{u}} with \mathrm{u}=\sin (\mathrm{t}). Using the Chain Rule,

\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{\mathrm{dy}}{\mathrm{du}} \cdot \frac{\mathrm{du}}{\mathrm{dt}}=2^{\mathrm{u}} \cdot \ln (2) \cdot \cos (\mathrm{t})=2^{\sin (\mathrm{t})} \cdot \ln (2) \cdot \cos (\mathrm{t}).


Practice 3: \quad Calculate \mathbf{D}\left(\sin \left(2^{\mathrm{X}}\right)\right) and \frac{\mathrm{d}}{\mathrm{dt}}\left(3^{\left(\mathrm{t}^{2}\right)}\right).

Some Applied Problems

Now we can examine applications which involve more complicated functions.

Example 4: A ball at the end of a rubber band (Fig. 1) is oscillating up and down, and its height 

(in feet) above the floor at time t seconds is h(t)=5+2 \sin (t / 2). (t is in radians)

(a) How fast is the ball travelling after 2 seconds? after 4 seconds? after 60 seconds?

(b) Is the ball moving up or down after 2 seconds? after 4 seconds? after 60 seconds?

(c) Is the vertical velocity of the ball ever 0?


Solution: (a) v(t)=D(h(t))=D(5+2 \sin (t / 2))

                =2 \cos (t / 2) \mathbf{D}(t / 2)=\cos (t / 2) feet/second so

                v(2)=\cos (2 / 2) \approx 0.540 \mathrm{ft} / \mathrm{s}, \mathrm{v}(4)=\cos (4 / 2) \approx-0.416 \mathrm{ft} / \mathrm{s}, and

                v(60)=\cos (60 / 2) \approx 0.154 \mathrm{ft} / \mathrm{s}

(b) The ball is moving upward when \mathrm{t}=2 and 60 seconds, downward when \mathrm{t}=4.

(c) v(t)=\cos (t / 2) and \cos (t / 2)=0 when t=\pi \pm n \cdot 2 \pi \quad(n=1,2, \ldots).


Example 5: If 2400 people now have a disease, and the number of people with the disease appears to double every 3 years, then the number of people expected to have the disease in \mathrm{t} years is \mathrm{y}=2400 \cdot 2^{\mathrm{t} / 3}.

(a) How many people are expected to have the disease in 2 years?

(b) When are 50,000 people expected to have the disease?

(c) How fast is the number of people with the disease expected to grow now and 2 years from now?

Solution: (a) In 2 years, y=2400 \cdot 2^{2 / 3} \approx 3,810 people.

(b) We know \mathrm{y}=50,000, and we need to solve 50,000=2400 \cdot 2^{\mathrm{t} / 3} for \mathrm{t}. Taking logarithms of each side of the equation, \ln (50,000)=\ln \left(2400 \cdot 2^{t / 3}\right)=\ln (2400)+(t / 3) \cdot \ln (2) so 10.819=7.783+.231 \mathrm{t} \quad and \mathrm{t} \approx 13.14 years. We expect 50,000 people to have the disease about 13.14 years from now.

(c) This is asking for \mathrm{dy} / \mathrm{dt} when \mathrm{t}=0 and 2 years. \frac{\mathrm{dy}}{\mathrm{dt}}=\frac{\mathrm{d}\left(2400 \cdot 2^{\mathrm{t} / 3}\right)}{\mathrm{dt}}=2400 \cdot 2^{\mathrm{t} / 3} \cdot \ln (2) \cdot(1 / 3) \approx 554.5 \cdot 2^{\mathrm{t} / 3}. Now, at \mathrm{t}=0, the rate of growth of the disease is approximately 554.5 \cdot 2^{0} \approx 554.5 people/year. In 2 years the rate of growth will be approximately 554.5 \cdot 2^{2 / 3} \approx 880 people/year.


Example 6: You are riding in a balloon, and at time \mathrm{t} (in minutes) you are \mathrm{h}(\mathrm{t})=\mathrm{t}+\sin (\mathrm{t}) feet high. If the temperature at an elevation \mathrm{h} is \mathrm{T}(\mathrm{h})=\frac{72}{1+\mathrm{h}} \quad degrees Fahrenheit, then how fast is your temperature changing when \mathrm{t}=5 minutes? (Fig. 2)



Solution: As \mathrm{t} changes, your elevation will change, and, as your elevation changes, so will your temperature. It is not difficult to write the temperature as a function of time, and then we could calculate

\frac{\mathrm{d} \mathrm{T}(\mathrm{t})}{\mathrm{dt}}=\mathrm{T}^{\prime}(\mathrm{t}) and evaluate \mathrm{T}^{\prime}(5), or we could use the Chain Rule:

\frac{\mathbf{d} \mathrm{T}(\mathrm{t})}{\mathbf{d} \mathbf{t}}=\frac{\mathbf{d} \mathrm{T}(\mathrm{h}(\mathrm{t}))}{\mathbf{d} \mathrm{h}(\mathrm{t})} \cdot \frac{\mathrm{d} \mathrm{h}(\mathrm{t})}{\mathrm{dt}}=\frac{\mathbf{d} \mathrm{T}(\mathrm{h})}{\mathbf{d} \mathrm{h}} \cdot \frac{\mathrm{d} \mathrm{h}(\mathrm{t})}{\mathrm{dt}}=\frac{-72}{(1+\mathrm{h})^{2}} \cdot(1+\cos (\mathrm{t}))

When t=5, then h(t)=5+\sin (5) \approx 4.04 so T^{\prime}(5) \approx \frac{-72}{(1+4.04)^{2}} \cdot(1+.284) \approx-3.64^{\circ} / minute.


Practice 4: Write the temperature \mathrm{T} in the previous example as a function of the variable \mathrm{t} alone and then differentiate \mathrm{T} to determine the value of \mathrm{dT} / \mathrm{dt} when \mathrm{t}=5 minutes.


Example 7: A scientist has determined that, under optimum conditions, an initial population of 40 bacteria will grow "exponentially" to \mathrm{f}(\mathrm{t})=40 \cdot \mathrm{e}^{\mathrm{t} / 5} bacteria after \mathrm{t} hours.

(a) Graph \mathrm{y}=\mathrm{f}(\mathrm{t}) for 0 \leq \mathrm{t} \leq 15. Calculate \mathrm{f}(0), \mathrm{f}(5), \mathrm{f}(10).

(b) How fast is the population increasing at time t ? (Find f^{\prime}(t)).

(c) Show that the rate of population increase, f^{\prime}(t), is proportional to the population, f(t), at any time t. \quad (Show \mathrm{f}^{\prime}(\mathrm{t})=\mathrm{K} \cdot \mathrm{f}(\mathrm{t}) for some constant \mathrm{K}).



Solution: (a) The graph of \mathrm{y}=\mathrm{f}(\mathrm{t}) is given in Fig. 3. \mathrm{f}(0)=40 \cdot \mathrm{e}^{0 / 5}=40 bacteria. \mathrm{f}(5)=40 \cdot \mathrm{e}^{5 / 5} \approx 109 bacteria and f(10)=40 \cdot \mathrm{e}^{10 / 5} \approx 296 bacteria.

(b) f^{\prime}(t)=\frac{\mathbf{d}}{d t}(f(t))=\frac{\mathbf{d}}{d t}\left(40 \cdot e^{\mathrm{t} / 5}\right)=40 \cdot \mathrm{e}^{\mathrm{t} / 5} \frac{\mathbf{d}}{\mathbf{d} t}(\mathrm{t} / 5)

=40 \cdot \mathrm{e}^{\mathrm{t} / 5}(1 / 5)=8 \cdot \mathrm{e}^{\mathrm{t} / 5} bacteria/hour.

(c) \quad \mathrm{f}^{\prime}(\mathrm{t})=8 \cdot \mathrm{e}^{\mathrm{t} / 5}=\frac{1}{5} \cdot\left(40 \cdot \mathrm{e}^{\mathrm{t} / 5}\right)=\frac{1}{5} \mathrm{f}(\mathrm{t}) so \mathrm{f}^{\prime}(\mathrm{t})=\mathrm{K} \cdot \mathrm{f}(\mathrm{t}) with \mathrm{K}=1 / 5.


Parametric Equations

Suppose a robot has been programmed to move in the \mathrm{xy}-plane so at time \mathrm{t} its \mathrm{x} coordinate will be \sin (t) and its \mathrm{y} coordinate will be t^{2}. Both x and y are functions of the independent parameter t, x(t)=\sin (t) and y(t)=t^{2}, and the path of the robot (Fig. 4) can be found by plotting (x, y)=(x(t), y(t)) for lots of values of t.

\begin{array}{c|c|c|c} \mathrm{t} & \mathrm{x}(\mathrm{t})=\sin (\mathrm{t}) & \mathrm{y} \mathrm{t})=\mathrm{t}^{2} & \text { plot point at} \\ \hline 0 & 0 & 0 & (0,0) \\ .5 & .48 & .25 & (.48, .25) \\ 1.0 & .84 & 1 & (.84,1) \\ 1.5 & 1.00 & 2.25 & (1,2.25) \\ 2.0 & .91 & 4 & (.91,4) \end{array} 


Typically we know \mathrm{x}(\mathrm{t}) and \mathrm{y}(\mathrm{t}) and need to find \mathrm{dy} / \mathrm{dx}, the slope of the tangent line to the graph of (\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})). The Chain Rule says that \frac{\mathrm{dy}}{\mathrm{dt}}=\frac{\mathrm{dy}}{\mathrm{dx}} \cdot \frac{\mathrm{d} \mathrm{x}}{\mathrm{dt}}, so, algebraically solving for \frac{\mathrm{dy}}{\mathrm{dx}}, we get \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy} / \mathrm{dt}}{\mathrm{dx} / \mathrm{dt}}.

If we can calculate \mathrm{dy} / \mathrm{dt} and \mathrm{dx} / \mathrm{dt}, the derivatives of \mathrm{y} and \mathrm{x} with respect to the parameter \mathrm{t}, then we can determine \mathrm{dy/dx}, the rate of change of \mathrm{y} with respect to \mathrm{x}.

If \mathrm{x}=\mathrm{x}(\mathrm{t}) and \mathrm{y}=\mathrm{y}(\mathrm{t}) are differentiable with respect to \mathrm{t}, and \frac{\mathrm{dx}}{\mathrm{dt}} \neq 0,
then \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy} / \mathrm{dt}}{\mathrm{dx} / \mathrm{dt}}.


Example 8: Find the slope of the tangent line to the graph of (x, y)=\left(\sin (t), t^{2}\right) when t=2 ?
Solution: \mathrm{dx} / \mathrm{dt}=\cos (\mathrm{t}) and \mathrm{dy} / \mathrm{dt}=2 \mathrm{t} . When \mathrm{t}=2, the object is at the point \left(\sin (2), \mathbf{2}^{2}\right) \approx(.91,4) and the slope of the tangent line to the graph is \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy} / \mathrm{dt}}{\mathrm{dx} / \mathrm{dt}}=\frac{2 \mathrm{t}}{\cos (\mathrm{t})}=\frac{2 \cdot 2}{\cos (\mathbf{2})} \approx \frac{4}{-.42} \approx-9.61.


Practice 5: Graph (x, y)=(3 \cos (t), 2 \sin (t)) and find the slope of the tangent line when t=\pi/2.

When we calculated \frac{d y}{d x}, the slope of the tangent line to the graph of (\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})), we used the derivatives \frac{d x}{d t} and \frac{d y}{d t}, and each of these derivatives also has a geometric meaning:

\frac{d x}{d t} measures the rate of change of \mathrm{x}(\mathrm{t}) with respect to \mathrm{t} - it tells us whether the \mathrm{x}-coordinate is increasing or decreasing as the t-variable increases.

\frac{d y}{d t} measures the rate of change of \mathrm{y}(\mathrm{t}) with respect to \mathrm{t}.


Example 9: For the parametric graph in Fig. 5, tell whether \frac{d x}{d t}, \frac{d y}{d t} and \frac{d y}{d x} is positive or negative when \mathrm{t=2}.


Solution: As we move through the point \mathrm{B} (where \mathrm{t}=2 ) in the direction of increasing values of t, we are moving to the left so x(t) is decreasing and \frac{d x}{d t} is negative.

Similarly, the values of \mathrm{y}(\mathrm{t}) are increasing so \frac{d y}{d t} is positive. Finally, the slope of the tangent line, \frac{d y}{d x}, is negative.

(As check on the sign of \frac{d y}{d x} we can also use the result \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\text { positive }}{\text { negative}}  = \text{negative}.)


Practice 6: For the parametric graph in the previous example, tell whether \frac{d x}{d t}, \frac{d y}{d t} and \frac{d y}{d x} is positive or negative when \mathrm{t}=1 and when \mathrm{t}=3.


Speed

If we know the position of an object at every time, then we can determine its speed. The formula for speed comes from the distance formula and looks a lot like it, but with derivatives.

If \quad \mathrm{x}=\mathrm{x}(\mathrm{t}) and \mathrm{y}=\mathrm{y}(\mathrm{t}) give the location of an object at time \mathrm{t} and are differentiable functions of t,

then the speed of the object is \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}.

Proof: The speed of an object is the limit, as \Delta \mathrm{t} \rightarrow 0, of \frac{\text { change in position }}{\text { change in time }}. (Fig. 6 )


\begin{gathered} \frac{\text { change in position }}{\text { change in time }}=\frac{\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}}{\Delta t}=\sqrt{\frac{(\Delta x)^{2}+(\Delta y)^{2}}{(\Delta t)^{2}}} \\ \qquad \qquad \qquad \qquad =\sqrt{\left(\frac{\Delta x}{\Delta t}\right)^{2}+\left(\frac{\Delta y}{\Delta t}\right)^{2}} \\ \quad \qquad \qquad \qquad \qquad \qquad \qquad \rightarrow \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} \qquad \text { as } \Delta t \rightarrow 0 \end{gathered}


Exercise 10: Find the speed of the object whose location at time \mathrm{t} is (\mathrm{x}, \mathrm{y})=\left(\sin (\mathrm{t}), \mathrm{t}^{2}\right) when \mathrm{t}=0 and \mathrm{t}=1.

Solution: \mathrm{dx} / \mathrm{dt}=\cos (\mathrm{t}) and \mathrm{dy} / \mathrm{dt}=2 \mathrm{t} so speed =\sqrt{(\cos (\mathrm{t}))^{2}+(2 \mathrm{t})^{2}}=\sqrt{\cos ^{2}(\mathrm{t})+4 \mathrm{t}^{2}}.

When t=0, speed =\sqrt{\cos ^{2}(\mathbf{0})+4(\mathbf{0})^{2}}=\sqrt{1+0}=1. When \mathrm{t}=1,

speed =\sqrt{\cos ^{2}(\mathbf{1})+4(\mathbf{1})^{2}}=\sqrt{0.29+4} \approx 2.07.


Practice 7: Show that an object whose location at time t is (x, y)=(3 \sin (t), 3 \cos (t)) has a constant speed. (This object is moving on a circular path).


Practice 8: Is the object whose location at time \mathrm{t} is (\mathrm{x}, \mathrm{y})=(3 \cos (\mathrm{t}), 2 \sin (\mathrm{t})) travelling faster at the top of the ellipse ( at \mathrm{t}=\pi / 2 ) or at the right edge of the ellipse (at \mathrm{t}=0)?

Practice Problem Answers

Practice 1: \log _{9} 20=\frac{\log (20)}{\log (9)} \approx 1.3634165 \approx \frac{\ln (20)}{\ln (9)}, \log _{3} 20=\frac{\log (20)}{\log (3)} \approx 2.726833 \approx \frac{\ln (20)}{\ln (3)}

                   \log _{\pi} \mathrm{e}=\frac{\log (\mathrm{e})}{\log (\pi)} \approx \mathbf{0 . 8 7 3 5 6 8 5} \approx \frac{\ln (\mathrm{e})}{\ln (\pi)}=\frac{1}{\ln (\pi)}


Practice 2: \mathbf{D}\left(\log _{10}(\sin (\mathrm{x}))\right)=\frac{1}{\sin (\mathrm{x}) \cdot \ln (10)} \quad \mathbf{D}(\sin (\mathrm{x}))=\frac{\cos (\mathbf{x})}{\sin (\mathrm{x}) \cdot \ln (10)}

                 \mathbf{D}\left(\log _{\pi}\left(\mathrm{e}^{\mathrm{x}}\right)\right)=\frac{1}{\mathrm{e}^{\mathrm{x}} \cdot \ln (\pi)} \mathrm{D}\left(\mathrm{e}^{\mathrm{x}}\right)=\frac{\mathbf{e}^{\mathbf{x}}}{\mathrm{e}^{\mathrm{x}} \cdot \ln (\pi)}=\frac{1}{\ln (\pi)}


Practice 3: D\left(\sin \left(2^{x}\right)\right)=\cos \left(2^{x}\right) D\left(2^{x}\right)=\cos \left(2^{x}\right) \cdot 2^{x} \cdot \ln (2)

                 \frac{\mathbf{d}}{\mathbf{d t}} 3^{\left(\mathrm{t}^{2}\right)}=3^{\left(\mathrm{t}^{2}\right)} \ln (3) \mathbf{D}\left(\mathrm{t}^{2}\right)=3^{\left(\mathrm{t}^{2}\right)} \ln (3) \cdot 2 \mathrm{t}


Practice 4: \mathrm{T}=\frac{72}{1+\mathrm{h}}=\frac{72}{1+\mathrm{t}+\sin (\mathrm{t})}

                  \frac{\mathbf{d} \mathrm{T}}{\mathbf{d} \mathbf{t}}=\frac{(1+\mathrm{t}+\sin (\mathrm{t})) \cdot \mathbf{D}(72)-72 \cdot \mathbf{D}(1+\mathrm{t}+\sin (\mathrm{t}))}{(1+\mathrm{t}+\sin (\mathrm{t}))^{2}}=\frac{-72(1+\cos (\mathrm{t}))}{(1+\mathrm{t}+\sin (\mathrm{t}))^{2}}

                  When t=5, \frac{\mathbf{d} T}{\mathbf{d t}}=\frac{-72(1+\cos (5))}{(1+\mathrm{t}+\sin (5))^{2}} \approx-\mathbf{3 . 6 3 6 9 5}.


Practice 5: \mathrm{x}(\mathrm{t})=3 \cos (\mathrm{t}) so \mathrm{dx} / \mathrm{dt}=-3 \sin (\mathrm{t}) \cdot \mathrm{y}(\mathrm{t})=2 \sin (\mathrm{t})

                 so \mathrm{dy} / \mathrm{dt}=2 \cos (\mathrm{t}) \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy} / \mathrm{dt}}{\mathrm{dx} / \mathrm{dt}}=\frac{2 \cos (\mathrm{t})}{-3 \sin (\mathrm{t})}.

                  When t=\pi / 2, \frac{d y}{d x}=\frac{2 \cos (\pi / 2)}{-3 \sin (\pi / 2)}=\frac{2 \cdot 0}{-3 \cdot 1}=0 . (See Fig. 12)



Practice 6: When x=1 : pos., pos., pos. When x=3 : pos., neg., neg.


Practice 7: \mathrm{x}(\mathrm{t})=3 \sin (\mathrm{t}) and \mathrm{y}(\mathrm{t})=3 \cos (\mathrm{t}) so \mathrm{dx} / \mathrm{dt}=3 \cos (\mathrm{t}) and \mathrm{dy} / \mathrm{dt}=-3 \sin (\mathrm{t}). Then

speed =\sqrt{(\mathrm{dx} / \mathrm{dt})^{2}+(\mathrm{dy} / \mathrm{dt})^{2}}=\sqrt{(3 \cos (\mathrm{t}))^{2}+(-3 \sin (\mathrm{t}))^{2}}

             =\sqrt{9 \cdot \cos ^{2}(\mathrm{t})+9 \cdot \sin ^{2}(\mathrm{t})}=\sqrt{9}=3, a constant.


Practice 8: \mathrm{x}(\mathrm{t})=3 \cos (\mathrm{t}) and \mathrm{y}(\mathrm{t})=2 \sin (\mathrm{t}) so \mathrm{dx} / \mathrm{dt}=-3 \sin (\mathrm{t}) and \mathrm{dy} / \mathrm{dt}=2 \cos (\mathrm{t}) . Then

speed =\sqrt{(\mathrm{d} x / \mathrm{dt})^{2}+(\mathrm{dy} / \mathrm{dt})^{2}}=\sqrt{(-3 \sin (\mathrm{t}))^{2}+(2 \cos (\mathrm{t}))^{2}}=\sqrt{9 \sin ^{2}(\mathrm{t})+4 \cos ^{2}(\mathrm{t})}.

When t=0, the speed is \sqrt{9 \cdot(0)^{2}+4 \cdot(1)^{2}}=2.

When t=\pi / 2, the speed is \sqrt{9 \cdot(1)^{2}+4 \cdot(0)^{2}}=3 (faster).