Analyzing the Toolkit Functions for Increasing or Decreasing Intervals

We will now return to our toolkit functions and discuss their graphical behavior in Figure 10, Figure 11, and Figure 12.

Function   Increasing/Decreasing Example 

Constant Function

f(x)=c

Neither increasing nor decreasing

 Neither increasing nor decreasing

Identity Function

f(x)=x

Increasing

 Increasing

Quadratic Function

f(x)=x^{2}

Increasing on (0, \infty)

Decreasing on (-\infty, 0)

Minimum at x=0

Increasing on (0,∞)

Decreasing on (−∞,0)

Minimum at x=0 


Figure 10

Function   Increasing/Decreasing Example 

Cubic Function

f(x)=x^{3}

Increasing

 Increasing

Reciprocal

f(x)=\frac{1}{x} 

Decreasing (-\infty, 0) \cup(0, \infty)


 Decreasing (−∞,0)∪(0,∞)

Reciprocal Squared

f(x)=\frac{1}{x^{2}} 

Increasing on (-\infty, 0)

Decreasing on (0, \infty) 

 Increasing on (−∞,0)
Decreasing on (0,∞)


Figure 11

Function   Increasing/Decreasing Example 

Cube Root

f(x)=\sqrt[3]{x}

Increasing  Cube Root-Increasing  

Square Root

f(x)=\sqrt{x} 

Increasing on (0, \infty)   Increasing on (0,∞)
Decreasing on (−∞,0) Increasing on (0,∞)

Absolute Value

f(x)=|x|

Increasing on (0, \infty)

Decreasing on (-\infty, 0) 

Absolute Value

f(x)=|x| 


Figure 12