Designing an Assembly Line for Reliability

Worked Out Example

Figure 1 represents an assembly line balancing problem. This is a famous problem studied in Ray Wild. We have adopted it for the purpose of explaining how the proposed model works. The numerical figure within a circle represents the task number.

Figure 1: Precedence diagram of workelements.

In Table 1, the above mentioned problem is summarizedintermsof workelements, immediate predecessor(s), expected task durations and their variances. We assume independent normality for each task duration. Using the above table, we can easily get the minimum number of workstation, \mathrm{N}_{\min } as 5. So, minimum trial cycle time, C_{\min }, comes out as C_{\min }=\left[\sum_{i=1}^{K} \frac{\mu_{i}}{N_{\min }}+1\right], i.e. C_{\min }=29 time units.

Table 1: Precedence relation and task times of work elements.

Work Element(i) Immediate Predecessor Expected Activity Time (\mu_i) Variance of activity time (sigma_{i}^{2})
1 - 6 0.09
2 - 5 0.0625
3 - 8 0.16
4 1 9 0.2025
5 1, 2 5 0.0625
6 2 4 0.04
7 3 5 0.0625
8 3 6 0.09
9 4 10 0.25
10 5, 6 5 0.0625
11 8 6 0.09
12
10, 7 2 0.01
13 12 5 0.0625
14 13 4 0.04
15 9, 11, 14 12 0.36
16 15 10 0.25
17 16 5 0.0625
18 16 15 0.5625
19 16 10 0.25
20 17 5
0.0625
21 18, 19, 20 6 0.09

Table 2: Trial Configurations

Trial Cycle Time Sl Work Station 1 Work Station 2 Work Station 3 Work Station 4 Work Station 5 R_{AL}
31 1 1,3,2,5,8 6,4,10,11,7,12 13,9,14,15 16,19,17, 20 18,21 0.873450476
2 1,3,8,2,7
6,11,5,10,4,12 13,9,14,15 16,17,19, 20 18,21 0.873450476
3 2,3,7,8,1
11,6,4,5, 10,12 9,13,14,15 16,18,17 20,19, 21 0.853130899
4 2,3,1,7,8,
5,11,6,10,12,13,14 4,9,15 16,18,17 20,19, 21 0.852897841
5 2,3,7,8,11
1,4,6,5,10,12 9,13,14,15 16,19,17, 20 18,21 0.873450476
6 3,1,7,8,11
2,6,5,10, 12,4 9,13,14,15 16,19,17, 20 18,21 0.871655455
7 3,7,8,1,2
5,6,10,12,13,14,11 4,9,15 16,19,17, 20 18,21 0.873211867
8 2,3,1,5,8
11,6,10,4,7,12 13,9,14,15 16,18,17 19,20 21 0.853130899
9 3,7,8,11,2
6,1,5,4,10,12 13,14,9,15 16,18,17 19,20, 21 0.853130899
10 1,2,3,8,11
4,6,7,5,10,12 13,14,9,15 16,17,18 20,19, 21 0.851377636
32 1 1,2,6,5,10 3,7,12,8,4 11,9,13,14 15,16,17, 20 19,18, 21 0.7750863
2 2,6,1,5,10
4,3,8,7,12 13,11,14,9 15,16,19 17,18, 20,21 0.771341063
3 2,6,1,5,10
3,8,11,4 7,12,9,13,14 15,16,19 18,17, 20,21 0.778812826
4 1,2,6,5,10
4,3,8,11 9,7,12,13,14 15,16,17, 20 19,18, 21 0.782594343
5 2,1,5,6,10
3,4,7,12, 13 14,8,11,9 15,16,17, 20 18,19, 21 0.783706858
6 2,6,3,7,1
5,10,12,13,8,14 4,11,9 15,16,17, 20 18,19, 21 0.786286827
7 2,1,6,3,5
7,10,12,13,14,8 11,4,9 15,16,19 18,17, 20,21 0.782487468
33 1 2,3,1,8,7 6,11,4,5,10,12 9,13,14,15 16,18,17 19,20, 21 0.853130899
2 3,2,1,8,11
6,5,7,4, 10,12 13,14,9,15 16,19,17, 20 18,21 0.871655455
3 3,7,8,2,11
6,1,5,10, 12,4 9,13,14,15 16,18,17 20,19, 21 0.853130899
4 3,1,7,8,2
4,11,5,6, 10,12 9,13,14,15 16,17,19, 20 18,21 0.873450476
5 1,2,5,3,8
6,4,7,11, 10,12 13,14,9,15 16,19,17, 20 18,21 0.873450476
6 3,8,1,2,11
7,4,6,5,10,12 9,13,14,15 16,19,17, 20 18,21 0.871655455
7 2,6,3,8,7
1,5,4,9 11,10,12, 13,14 15,16,17, 20 18,19, 21 0.769756335
8 3,7,2,6,8
1,4,9,5 11,10,12, 13,14 15,16,19 18,17, 20,21 0.766036852
9 3,8,1,4
9,2,5,6,10 11,7,12,13,14 15,16,19 18,17, 20,21 0.776466963
10 1,3,2,6,8
5,10,4,9 11,7,12,13,14 15,16,17, 20 19,18, 21 0.779904332
11 2,6,1,3,8
4,5,7,9 11,10,12, 13,14 15,16,19 18,17, 20,21 0.776135813
12 1,2,4,6,5
3,7,8,9 11,10,12,13,14 15,16,17, 20 19,18, 21 0.78007511
13 1,2,6,4,5
10,9,3,8 11,7,12,13,14 15,16,19 18,17, 20,21 0.776305766
14
2,1,4,5,6
10,9,3,8 7,11,12,13,14 15,16,17, 20 18,19, 21 0.78007511
15 2,6,3,8,1
4,5,7,9 10,11,12, 13,14 15,16,17, 20 19,18, 21 0.779904332
16 1,3,4,8
7,2,5,9,6 10,12,11, 13,14 15,16,17, 20 19,18, 21 0.780237089
17 2,1,4,6,5
3,7,10,12,13,14 9,8,11 15,16,19 18,17, 20,21 0.77973899
34 1 3,7,8,1,11 2,6,5,4,10, 12 9,13,14,15 16,19,17, 20 18,21 0.871655455
2 3,7,8,11,1
2,5,6,10,4, 12 13,9,14,15 16,18,17 19,20, 21 0.851377636
3 3,2,8,1,11
7,5,6,4,10, 12 13,9,14,15 16,18,17 19,20, 21 0.851377636
4 2,3,8,11,1
6,5,7,10, 12,13,14 4,9,15 16,17, 20, 19 18,21 0.86378678
5 3,2,8,11,1
7,5,4,6,10, 12 13,9,14,15 16,19,17, 20 18,21 0.871655455
6 3,1,8,11,2
6,7,5,10, 12,13,14 4,9,15 16,17,18 20,19, 21 0.843692015
7 3,8,11,1,7
2,5,6,10, 12,13,14 4,9,15 16,19,17, 20 18,21 0.86378678
8 3,7,8,1,11
2,6,5,10, 12,13,14 4,9,15 16,18,17 20,19,21 0.843692015
35 1 2,1,6,4,3 7,9,8,11,5 10,12,13, 14,15 16,19,17, 20 18,21 0.788077309
2 2,1,6,3,4
8,11,5,9, 10 7,12,13, 14,15 16,17,19, 20 18,21 0.788077309

Table 3: Final Optimum Configuration

C Work Station 1 Work Station 2 Work Station 3 WorkStation 4 Work Station 5 R_{AL}
31 2, 3, 7, 8, 11 1, 4, 6, 5, 10, 12 9, 13, 14,15 16, 19, 17, 20 18, 21 0.873450476

Now, we consider in the final solution the Cycle time \mathrm{C} as 35 time units. So, the trial cycle time starts from 29 time units and goes upto 35 time units. For the given problem, we get no feasible solution for the trial cycle times as 29 and 30 time units. For the rest of the cycle times we get feasible solutions. These trial configurations are presented in Table 2.

The final solution based on optimization criterion is presented in Table 3 for trial cycle time as 31 time units.

In the optimum configuration it is found that the optimum value of R_{A L} is 0.873450476 having the configuration of 5 workstations with work elements 2,3,7,8,11 assigned to workstation 1 , work elements 1,4,5,6,10,12 assigned to workstation 2, work elements 9, 13, 14, 15 assigned to workstation 3 , work elements 16,19 , 17,20 assigned to workstation 4 and work elements 18,21 assigned to workstation 5 .