A Survey on Queueing Systems with Mathematical Models and Applications

4. Formulation of Queueing Models

4.2. M/M/1 Queue

The queueing system M/M/1 is the simplest non-trivial queue where the customers arrive according to a Poisson process with rate \lambda, that is, the inter-arrival times are independent, exponentially distributed random variables with parameter \lambda. The service times are assumed to be independent and exponentially distributed with parameter \mu. Furthermore, all the involved random variables are supposed to be independent of each other.

Let \rho=\frac{\lambda}{\mu} < 1, then \mathrm{C}_{\mathrm{N}}=\left(\frac{\lambda}{\mu}\right)^{\mathrm{N}}=\rho^{\mathrm{N}} for \mathrm{N}=1,2,3, \ldots

Therefore, P_{N}=C_{N} P_{0}. Now, the normalizing condition is

 \begin{aligned} &\sum_{\mathrm{N}=0}^{\infty} \mathrm{P}_{\mathrm{N}}=1 \\ &\Rightarrow \quad\left(1+\sum_{\mathrm{N}=1}^{\infty} \mathrm{C}_{\mathrm{N}}\right) \mathrm{P}_{0}=1 \\ &\Rightarrow \quad \mathrm{P}_{0}=\frac{1}{\left(1+\sum_{\mathrm{N}=1}^{\infty} \mathrm{C}_{\mathrm{N}}\right)} \\ &\Rightarrow \quad \mathrm{P}_{0}=\frac{1}{\left(1+\sum_{\mathrm{N}=1}^{\infty} \rho^{\mathrm{N}}\right)} \\ &\Rightarrow \quad \mathrm{P}_{0}=\frac{1}{\left(\rho^{0}+\sum_{\mathrm{N}=1}^{\infty} \rho^{\mathrm{N}}\right)} \\ &\Rightarrow \quad \mathrm{P}_{0}=\frac{1}{\left(\rho^{0}+\sum_{\mathrm{N}=1}^{\infty} \rho^{\mathrm{N}}\right)} \\ &\Rightarrow \quad \mathrm{P}_{0}=\frac{1}{\sum_{\mathrm{N}=0}^{\infty} \rho^{\mathrm{N}}} \\ &\Rightarrow \quad \mathrm{P}_{0}=\left(\frac{1}{1-\rho}\right)^{-1} \\&\Rightarrow \quad \mathrm{P}_{0}=1-\rho \end{aligned}

Thus, P_{N}=(1-\rho) \rho^{N}, \quad for N=0,1,2, \ldots

Consequently, average number of customers in the system is
\begin{aligned} &\mathrm{L}_{\mathrm{s}}=\sum_{\mathrm{N}=0}^{\infty} \mathrm{NP}^{N} \\ &\Rightarrow \quad \mathrm{L}_{\mathrm{s}}=\sum_{\mathrm{N}=0}^{\infty} \mathrm{N}(1-\rho) \rho^{N} \\ &\Rightarrow \quad \mathrm{L}_{\mathrm{s}}=\rho(1-\rho) \sum_{\mathrm{N}=0}^{\infty} \frac{\mathrm{d}}{\mathrm{d} \rho} \rho^{N} \\ &\Rightarrow \quad \mathrm{L}_{\mathrm{s}}=\rho(1-\rho) \frac{\mathrm{d}}{\mathrm{d} \rho}\left(\sum_{\mathrm{N}=0}^{\infty} \rho^{N}\right) \\ &\Rightarrow \quad \mathrm{L}_{\mathrm{s}}=\rho(1-\rho) \frac{\mathrm{d}}{\mathrm{d} \rho}\left(\frac{1}{1-\rho}\right) \\ &\Rightarrow \quad \mathrm{L}_{\mathrm{s}}=\rho(1-\rho) \frac{1}{(1-\rho)^{2}} \\ &\Rightarrow \quad \mathrm{L}_{\mathrm{s}}=\frac{\rho}{1-\rho}=\frac{\lambda}{\mu-\lambda} \end{aligned}

Summarizing the results, we have following conclusions:

i. The probability of having zero customers in the system

\mathrm{P}_{0}=1-\rho

ii. The probability of having N customers in the system

P_{N}=\rho^{N} P_{0}

iii. Average number of customers in system

\\mathrm{L}_{\mathrm{s}}=\frac{\rho}{(1-\rho)}

iv. Average number of customers in the queue

L_{q}=\frac{\rho^{2}}{(1-\rho)}

v. Average waiting time in the system

\mathrm{W}_{\mathrm{s}}=\frac{\rho}{\lambda(1-\rho)}

vi. Average waiting time in the queue

\mathrm{W}_{\mathrm{q}}=\frac{\rho}{\mu(1-\rho)}