Formulation of suppliers' individual average profit
Differential equation for the supplier in Figure 2 in [0,T] is given by
with boundary conditions

and

. Solving the differential equation with the boundary condition, we have
(3)
![=h_s [\dfrac{p_s t^{2}_{s}} {p_m} −p_s t^{2}_{s}] =h_s [\dfrac{p_s t^{2}_{s}} {p_m} −p_s t^{2}_{s}]](https://learn.saylor.org/filter/tex/pix.php/9ce4b797fe78e5ff64c83e5916776125.svg)
.
Figure 2 Inventory level of supplier.
The total idle cost =
![id_s [TR+P_s t_s(\dfrac{1}{D_c}−\dfrac{1}{p_m})] id_s [TR+P_s t_s(\dfrac{1}{D_c}−\dfrac{1}{p_m})]](https://learn.saylor.org/filter/tex/pix.php/d508ca586f4f756ece01c90e4e921848.svg)
, purchase cost =

, selling price =

, and ordering cost =

.
(4)
Formulation of manufacturer individual average profit
Inventory level of manufacturer in Figure 3 in [0,T] is given by
(5)
with boundary conditions

and

.
Figure 3 Inventory level of manufacturer.

.
![=hm[∫^{TR}_{0}p_mtdt+∑^{1}_{r−1}∫^{(i+1)T_R}_{iT_R}(p_mt−iD_R)dt+∫^{(T_s}_{rT_R}(p_mt−rD_R)dt \\ + ∫^{(r+1)T_R}_{T_s}(p_mT_s−rD_R)dt+∑_{r+1}^{n−1}∫^{(i+1)T_R}_{iT_R} (p_mT_s−iD_R)dt+∫^{(n+1)T_R}_{nT_R} (p_mT_s−nD_R)dt] \\ =h_m[np_mT_sT_R−\dfrac{n^2+n−2r−2}{2}T_RD_R−\dfrac{p^{2}_{s}t^{2}_{s}}{2p_m}] =hm[∫^{TR}_{0}p_mtdt+∑^{1}_{r−1}∫^{(i+1)T_R}_{iT_R}(p_mt−iD_R)dt+∫^{(T_s}_{rT_R}(p_mt−rD_R)dt \\ + ∫^{(r+1)T_R}_{T_s}(p_mT_s−rD_R)dt+∑_{r+1}^{n−1}∫^{(i+1)T_R}_{iT_R} (p_mT_s−iD_R)dt+∫^{(n+1)T_R}_{nT_R} (p_mT_s−nD_R)dt] \\ =h_m[np_mT_sT_R−\dfrac{n^2+n−2r−2}{2}T_RD_R−\dfrac{p^{2}_{s}t^{2}_{s}}{2p_m}]](https://learn.saylor.org/filter/tex/pix.php/4162e439010f4dca63389324e1553f52.svg)
.
The total idle cost =
![id_m[\dfrac{pm_{Tm}−nD_R}{D_c}] id_m[\dfrac{pm_{Tm}−nD_R}{D_c}]](https://learn.saylor.org/filter/tex/pix.php/19bb46b2fcab3c68faa0c9aa0b131753.svg)
, purchase cost =

, selling price =

, and ordering cost =

.
Case 1
(When

)
![I_{em}=I_{pr}=\text{Amount of interest earned by the manufacturer in [0,T] from retailer} I_{em}=I_{pr}=\text{Amount of interest earned by the manufacturer in [0,T] from retailer}](https://learn.saylor.org/filter/tex/pix.php/9f50aeaf086c455eea416f749f0be883.svg)
.
![= \text{Amount of interest paid by the retailer to the manufacturer in [0,T]} = \text{Amount of interest paid by the retailer to the manufacturer in [0,T]}](https://learn.saylor.org/filter/tex/pix.php/a21f627aeef69bc1b2da1154d7934c4a.svg)
.

.
![=\dfrac{1}{T}[(c_r−c_m)p_mT_h_m(np_mT_sT_R−\dfrac{n^2+n−2r−2}{2}T_RD_R−\dfrac{p^{2}_{s}t^{2}_{s}}{2pm}) \\ −id)m(\dfrac{p_mT_m−nD_R}{D_c})+\dfrac{nc_rI_p}{2}[T_RD_R+D_cM^2−2MD_R] \\ +c_rI_p(\dfrac{(p_mT_s−nD_R)^2}{2D_c}+(p_mT_s−nD_R)M+\dfrac{D_cM^2}{2})−Am] =\dfrac{1}{T}[(c_r−c_m)p_mT_h_m(np_mT_sT_R−\dfrac{n^2+n−2r−2}{2}T_RD_R−\dfrac{p^{2}_{s}t^{2}_{s}}{2pm}) \\ −id)m(\dfrac{p_mT_m−nD_R}{D_c})+\dfrac{nc_rI_p}{2}[T_RD_R+D_cM^2−2MD_R] \\ +c_rI_p(\dfrac{(p_mT_s−nD_R)^2}{2D_c}+(p_mT_s−nD_R)M+\dfrac{D_cM^2}{2})−Am]](https://learn.saylor.org/filter/tex/pix.php/9b16e74b84d864fd907df58c16bef044.svg)
(6)
Case 2
(When

)
![I_{em}=I_{pr}=\text{Amount of interest earned by the manufacturer in [0,T] from retailer.} I_{em}=I_{pr}=\text{Amount of interest earned by the manufacturer in [0,T] from retailer.}](https://learn.saylor.org/filter/tex/pix.php/68a3941ad450a65884cd890395690b76.svg)
![=\text{Amount of interest paid by the retailer to the manufacturer in [0,T.] =\text{Amount of interest paid by the retailer to the manufacturer in [0,T.]](https://learn.saylor.org/filter/tex/pix.php/3a6a997659feced4e07f21b49b15a62a.svg)
</div><div style="text-align: left;">
![=c_rI_p[n∫^{T_R}_{M}(D_R−D_ct)dt+∫^{T′}_{M}(p_mT_s−nD_R−D_ct)dt] =c_rI_p[n∫^{T_R}_{M}(D_R−D_ct)dt+∫^{T′}_{M}(p_mT_s−nD_R−D_ct)dt]](https://learn.saylor.org/filter/tex/pix.php/f9661140603921976d5af989c4f0f5ed.svg)
![=\dfrac{1}{T}[(cr_1−c_r)p_mT_s−\dfrac{h_r}{2}(\dfrac{p^{2}_{m}T^{2}_{s}}{D_c}−2np_mT_sT_R−(2n+1)T_RD_R) \\ +\dfrac{nc_{r+1}i_eD_cM^2}{2}+ \dfrac{c_{r_1}{i_e}}{2} (p_mT_s−nD_R)(2M−T′) \\ −\dfrac{nc_rI_p}{2}[T_RD_R+D_cM_2−2MD_R]−id_rT_R−A_r] =\dfrac{1}{T}[(cr_1−c_r)p_mT_s−\dfrac{h_r}{2}(\dfrac{p^{2}_{m}T^{2}_{s}}{D_c}−2np_mT_sT_R−(2n+1)T_RD_R) \\ +\dfrac{nc_{r+1}i_eD_cM^2}{2}+ \dfrac{c_{r_1}{i_e}}{2} (p_mT_s−nD_R)(2M−T′) \\ −\dfrac{nc_rI_p}{2}[T_RD_R+D_cM_2−2MD_R]−id_rT_R−A_r]](https://learn.saylor.org/filter/tex/pix.php/c9fe84dc5bc2c42619009466ee33cebb.svg)
(7)
Formulation of retailer individual average profit
Inventory level of retailer in Figure 4 in [0,T] is given by
(8)
with boundary conditions

and

.
Figure 4 Inventory level of retailer.
![=\dfrac{2}[\dfrac{p^{2}_{m}T^{2}_{s}}{D_c}−2np_mT_sT_R−(2n+1)T_RD_R] =\dfrac{2}[\dfrac{p^{2}_{m}T^{2}_{s}}{D_c}−2np_mT_sT_R−(2n+1)T_RD_R]](https://learn.saylor.org/filter/tex/pix.php/7bf0e6f3bc41003e144b3752cb8c4b17.svg)
.
The total idle cost =

, purchase cost =

, selling price =

, and ordering cost =

.
Case 1
(When

)
Interest earned by the retailers for (

) cycle is given by

.

,
![I_{pr}=\text{Amount of interest paid by the retailer to the manufacturer in [0,T]} I_{pr}=\text{Amount of interest paid by the retailer to the manufacturer in [0,T]}](https://learn.saylor.org/filter/tex/pix.php/3ca9e90fd8664b345cb7c5001951a208.svg)
.
![=nc_rI_p[\dfrac{T_RD_R+D_cM^2−2MD_R}{2}]+c_rI_p[\dfrac{(p_mT_s−nD_R)^2}{2D_c} \\ +(p_mT_s−nD_R)M+\dfrac{D_cM^2}{2}] =nc_rI_p[\dfrac{T_RD_R+D_cM^2−2MD_R}{2}]+c_rI_p[\dfrac{(p_mT_s−nD_R)^2}{2D_c} \\ +(p_mT_s−nD_R)M+\dfrac{D_cM^2}{2}]](https://learn.saylor.org/filter/tex/pix.php/f8b3910b659cda8f94ed2c87192f11e4.svg)
,

.
![\dfrac{1}{T}[c_{r1}p_mT_s−c_rp_mT_s−\dfrac{h_r}{2}(\dfrac{p^{2}_{m}T^{2}_{s}}{D_c}−2np_mT_sT_R−(2n+1)T_RD_R) \\ +\dfrac{(n+1)c_{r1}i_eD_cM^2}{2}−\dfrac{n_{cr}I_p}{2}[T_RD_R+D_cM^2−2MD_R]−id_rT_R−A_r \\ +(p_mT_s−nD_R)M+\dfrac{D_cM^2}{2})−c_rI_p(\dfrac{(p_mT_s−nDR)^2}{2D_c}] \dfrac{1}{T}[c_{r1}p_mT_s−c_rp_mT_s−\dfrac{h_r}{2}(\dfrac{p^{2}_{m}T^{2}_{s}}{D_c}−2np_mT_sT_R−(2n+1)T_RD_R) \\ +\dfrac{(n+1)c_{r1}i_eD_cM^2}{2}−\dfrac{n_{cr}I_p}{2}[T_RD_R+D_cM^2−2MD_R]−id_rT_R−A_r \\ +(p_mT_s−nD_R)M+\dfrac{D_cM^2}{2})−c_rI_p(\dfrac{(p_mT_s−nDR)^2}{2D_c}]](https://learn.saylor.org/filter/tex/pix.php/7ddee2cd3b2491db2027d096cf31a890.svg)
(9)
Case 2
(When

)
Interest earned by the retailers for (

) cycle is given by
Interest payable by the retailers for the first n cycle is given by

![\begin{aligned}&=c_{r} I_{p}\left[n \int_{M}^{T_{R}}\left(D_{R}-D_{c} t\right) d t\right] \\&=\frac{n c_{r} I_{p}}{2}\left[T_{R} D_{R}+D_{c} M^{2}-2 M D_{R}\right]\end{aligned} \begin{aligned}&=c_{r} I_{p}\left[n \int_{M}^{T_{R}}\left(D_{R}-D_{c} t\right) d t\right] \\&=\frac{n c_{r} I_{p}}{2}\left[T_{R} D_{R}+D_{c} M^{2}-2 M D_{R}\right]\end{aligned}](https://learn.saylor.org/filter/tex/pix.php/954a7522958a97abb68408d026e6c572.svg)
(10)
![$=\frac{1}{T}[$ revenue from sale-purchase cost-holding cost+earned interest-payable interest-idle cost-ordering cost]\(\begin{aligned}=& \frac{1}{T}\left[\left(c_{r_{1}}-c_{r}\right) p_{m} T_{s}-\frac{h_{r}}{2}\left(\frac{p_{m}^{2} T_{s}^{2}}{D_{c}}-2 n p_{m} T_{s} T_{R}-(2 n+1) T_{R} D_{R}\right)\right.\\&+\frac{n c_{r_{1}} i_{e} D_{c} M^{2}}{2}+\frac{c_{r_{1}} i_{e}}{2}\left(p_{m} T_{s}-n D_{R}\right)\left(2 M-T^{\prime}\right) \\&\left.-\frac{n c_{r} I_{p}}{2}\left[T_{R} D_{R}+D_{c} M^{2}-2 M D_{R}\right]-\mathrm{id}_{r} T_{R}-A_{r}\right]\end{aligned} $=\frac{1}{T}[$ revenue from sale-purchase cost-holding cost+earned interest-payable interest-idle cost-ordering cost]\(\begin{aligned}=& \frac{1}{T}\left[\left(c_{r_{1}}-c_{r}\right) p_{m} T_{s}-\frac{h_{r}}{2}\left(\frac{p_{m}^{2} T_{s}^{2}}{D_{c}}-2 n p_{m} T_{s} T_{R}-(2 n+1) T_{R} D_{R}\right)\right.\\&+\frac{n c_{r_{1}} i_{e} D_{c} M^{2}}{2}+\frac{c_{r_{1}} i_{e}}{2}\left(p_{m} T_{s}-n D_{R}\right)\left(2 M-T^{\prime}\right) \\&\left.-\frac{n c_{r} I_{p}}{2}\left[T_{R} D_{R}+D_{c} M^{2}-2 M D_{R}\right]-\mathrm{id}_{r} T_{R}-A_{r}\right]\end{aligned}](https://learn.saylor.org/filter/tex/pix.php/8a908bdcfa02e3806e7a01306ce3d88c.svg)
\)
(11)
Crisp environment
Case 1
(

)

(12)
where

,

(13)

(14)
and
![E=[h_m \dfrac{n^2+n−2r−2}{2}+h_r \dfrac{2n+1}{2}]T_RD_R+\dfrac{(n+1)c_{r1}I_eD_cM^2}{2} \\ +(nid_m−id_s−id_r)T_R+id_sT_s−(A_s+A_m+A_r E=[h_m \dfrac{n^2+n−2r−2}{2}+h_r \dfrac{2n+1}{2}]T_RD_R+\dfrac{(n+1)c_{r1}I_eD_cM^2}{2} \\ +(nid_m−id_s−id_r)T_R+id_sT_s−(A_s+A_m+A_r](https://learn.saylor.org/filter/tex/pix.php/18ec24d22f32f33b01bbefd4f3cba3ae.svg)
) (15)

(16)

(17)
Therefore,

is concave if

. (18)
Case 2
(

)

![\begin{aligned}=& \frac{D_{c}}{p_{m} T_{s}+D_{R}}\left[\left(c_{m}-c_{s}\right) p_{m} T_{s}-h_{s}\left(\frac{p_{s} t_{s}^{2}}{p_{m}}-p_{s} t_{s}^{2}\right)-\mathrm{id}_{s}\left(T_{R}+p_{s} t_{s} \frac{1}{D_{c}}-\frac{1}{p_{m}}\right)-A_{s}\right.\\&+\left(c_{r}-c_{m}\right) p_{m} T_{s}-h_{m}\left(n p_{m} T_{s} T_{R}-\frac{n^{2}+n-2 r-2}{2} T_{R} D_{R}-\frac{p_{s}^{2} t_{s}^{2}}{2 p_{m}}\right) \\&-\operatorname{id}_{m}\left(\frac{p_{m} T_{m}-n D_{R}}{D_{c}}\right) \\&-A_{m}+\left(c_{r 1}-c_{r}\right) p_{m} T_{s}-\frac{h_{r}}{2}\left(\frac{p_{m}^{2} T_{s}^{2}}{D_{c}}-2 n p_{m} T_{s} T_{R}-(2 n+1) T_{R} D_{R}\right) \\&\left.+\frac{n c_{r_{1}} I_{e} D_{c} M^{2}}{2}+\frac{c_{r_{1}} I_{e}}{2}\left(p_{m} T_{s}-n D_{R}\right)(2 M-T)-\mathrm{id}_{r} T_{R}-A_{r}\right] \\=& \frac{D_{c}}{p_{m} T_{s}+D_{R}}\left[A p_{s}^{2} t_{s}^{2}-B p_{s} t_{s}+F\right]\end{aligned} \begin{aligned}=& \frac{D_{c}}{p_{m} T_{s}+D_{R}}\left[\left(c_{m}-c_{s}\right) p_{m} T_{s}-h_{s}\left(\frac{p_{s} t_{s}^{2}}{p_{m}}-p_{s} t_{s}^{2}\right)-\mathrm{id}_{s}\left(T_{R}+p_{s} t_{s} \frac{1}{D_{c}}-\frac{1}{p_{m}}\right)-A_{s}\right.\\&+\left(c_{r}-c_{m}\right) p_{m} T_{s}-h_{m}\left(n p_{m} T_{s} T_{R}-\frac{n^{2}+n-2 r-2}{2} T_{R} D_{R}-\frac{p_{s}^{2} t_{s}^{2}}{2 p_{m}}\right) \\&-\operatorname{id}_{m}\left(\frac{p_{m} T_{m}-n D_{R}}{D_{c}}\right) \\&-A_{m}+\left(c_{r 1}-c_{r}\right) p_{m} T_{s}-\frac{h_{r}}{2}\left(\frac{p_{m}^{2} T_{s}^{2}}{D_{c}}-2 n p_{m} T_{s} T_{R}-(2 n+1) T_{R} D_{R}\right) \\&\left.+\frac{n c_{r_{1}} I_{e} D_{c} M^{2}}{2}+\frac{c_{r_{1}} I_{e}}{2}\left(p_{m} T_{s}-n D_{R}\right)(2 M-T)-\mathrm{id}_{r} T_{R}-A_{r}\right] \\=& \frac{D_{c}}{p_{m} T_{s}+D_{R}}\left[A p_{s}^{2} t_{s}^{2}-B p_{s} t_{s}+F\right]\end{aligned}](https://learn.saylor.org/filter/tex/pix.php/b71242caf17635e7295ddb8b9b2f658b.svg)
(19)
where A and B are given in (16) and (17), respectively and
F=[hmn2+n−2r−22+hr2n+12]TRDR+(n+1)cr1IeDcM22
+(nidm−ids−idr)TR+idsTs−(As+Am+Ar) (20)

(21)

(22)
Therefore,

is concave if

(23)
Proposed inventory model in uncertain environment
Let us consider

,

,

, and

as zigzag uncertain variables where

,

,

, and

. Then, the objective is reduce to the following:
- For Case 1 (
)
![A\widetilde{T}P_1 =\dfrac{D_c}{p_mT_s+D_R}[0(c_m−c_s)p_mT_s−h_s(\dfrac{p_st^{2}_{s}}{p_m}−p_st^{2}_{s})−\widetilde{id}_s(T_R+p_st_s(\dfrac{1}{D_c}−\dfrac{1}{p_m})) \\ \begin{aligned} &-A_{s}+\left(c_{r}-c_{m}\right) p_{m} T_{s}-h_{m}\left(n p_{m} T_{s} T_{R}-\frac{n^{2}+n-2 r-2}{2} T_{R} D_{R}-\frac{p_{s}^{2} t_{s}^{2}}{2 p_{m}}\right) \\ &-A_{m}+\left(c_{r_{1}}-c_{r}\right) p_{m} T_{s}-\frac{h_{r}}{2}\left(\frac{p_{m}^{2} T_{s}^{2}}{D_{c}}-2 n p_{m} T_{s} T_{R}-(2 n+1) T_{R} D_{R}\right) \\ &\left.-\widetilde{i d}_{m}\left(\frac{p_{m} T_{m}-n D_{R}}{D_{c}}\right)+\frac{(n+1) c_{r_{1}} \widetilde{I}_{r e} D_{c} M^{2}}{2}-\widetilde{i d}_{r} T_{R}-A_{r}\right] \end{aligned} A\widetilde{T}P_1 =\dfrac{D_c}{p_mT_s+D_R}[0(c_m−c_s)p_mT_s−h_s(\dfrac{p_st^{2}_{s}}{p_m}−p_st^{2}_{s})−\widetilde{id}_s(T_R+p_st_s(\dfrac{1}{D_c}−\dfrac{1}{p_m})) \\ \begin{aligned} &-A_{s}+\left(c_{r}-c_{m}\right) p_{m} T_{s}-h_{m}\left(n p_{m} T_{s} T_{R}-\frac{n^{2}+n-2 r-2}{2} T_{R} D_{R}-\frac{p_{s}^{2} t_{s}^{2}}{2 p_{m}}\right) \\ &-A_{m}+\left(c_{r_{1}}-c_{r}\right) p_{m} T_{s}-\frac{h_{r}}{2}\left(\frac{p_{m}^{2} T_{s}^{2}}{D_{c}}-2 n p_{m} T_{s} T_{R}-(2 n+1) T_{R} D_{R}\right) \\ &\left.-\widetilde{i d}_{m}\left(\frac{p_{m} T_{m}-n D_{R}}{D_{c}}\right)+\frac{(n+1) c_{r_{1}} \widetilde{I}_{r e} D_{c} M^{2}}{2}-\widetilde{i d}_{r} T_{R}-A_{r}\right] \end{aligned}](https://learn.saylor.org/filter/tex/pix.php/fc0937add84a2290fe380a28bd13dc33.svg)
(24)
- For Case 2 (
)
![A\widetlide{T}P_2 = \frac{D_{c}}{p_{m} T_{s}+D_{R}}\left[\left(c_{m}-c_{s}\right) p_{m} T_{s}-h_{s}\left(\frac{p_{s} t_{s}^{2}}{p_{m}}-p_{s} t_{s}^{2}\right)-\tilde{i d}_{s}\left(T_{R}+p_{s} t_{s} \frac{1}{D_{c}}-\frac{1}{p_{m}}\right)−A_s \right. \\\begin{aligned}&+\left(c_{r}-c_{m}\right) p_{m} T_{s}-h_{m}\left(n p_{m} T_{s} T_{R}-\frac{n^{2}+n-2 r-2}{2} T_{R} D_{R}-\frac{p_{s}^{2} t_{s}^{2}}{2 p_{m}}\right) \\&-\widetilde{i d}_{m}\left(\frac{p_{m} T_{m}-n D_{R}}{D_{c}}\right) \\&-A_{m}+\left(c_{r 1}-c_{r}\right) p_{m} T_{s}-\frac{h_{r}}{2}\left(\frac{p_{m}^{2} T_{s}^{2}}{D_{c}}-2 n p_{m} T_{s} T_{R}-(2 n+1) T_{R} D_{R}\right) \\&\left.+\left\{\frac{n c_{r_{1}} D_{c} M^{2}}{2}+\frac{c_{r_{1}}}{2}\left(p_{m} T_{s}-n D_{R}\right)\left(2 M-T^{\prime}\right)\right\} \widetilde{I}_{r e}-\widetilde{i d}_{r} T_{R}-A_{r}\right]\end{aligned} A\widetlide{T}P_2 = \frac{D_{c}}{p_{m} T_{s}+D_{R}}\left[\left(c_{m}-c_{s}\right) p_{m} T_{s}-h_{s}\left(\frac{p_{s} t_{s}^{2}}{p_{m}}-p_{s} t_{s}^{2}\right)-\tilde{i d}_{s}\left(T_{R}+p_{s} t_{s} \frac{1}{D_{c}}-\frac{1}{p_{m}}\right)−A_s \right. \\\begin{aligned}&+\left(c_{r}-c_{m}\right) p_{m} T_{s}-h_{m}\left(n p_{m} T_{s} T_{R}-\frac{n^{2}+n-2 r-2}{2} T_{R} D_{R}-\frac{p_{s}^{2} t_{s}^{2}}{2 p_{m}}\right) \\&-\widetilde{i d}_{m}\left(\frac{p_{m} T_{m}-n D_{R}}{D_{c}}\right) \\&-A_{m}+\left(c_{r 1}-c_{r}\right) p_{m} T_{s}-\frac{h_{r}}{2}\left(\frac{p_{m}^{2} T_{s}^{2}}{D_{c}}-2 n p_{m} T_{s} T_{R}-(2 n+1) T_{R} D_{R}\right) \\&\left.+\left\{\frac{n c_{r_{1}} D_{c} M^{2}}{2}+\frac{c_{r_{1}}}{2}\left(p_{m} T_{s}-n D_{R}\right)\left(2 M-T^{\prime}\right)\right\} \widetilde{I}_{r e}-\widetilde{i d}_{r} T_{R}-A_{r}\right]\end{aligned}](https://learn.saylor.org/filter/tex/pix.php/b29aec8e8c18f1a93f513b3efae63613.svg)
(25)
The equivalent crisp model
Using Lemma 1 and applying Theorem 2, the expected total average profit is given by the following:
- For Case 1

![E A [\widetilde {T} P_1] =\dfrac{D_c}{pm^{T_s+D_R}} [0(c_m−c_s)p_mT_s−h_s(\dfrac{p_{s}t^{2}_{s}} {p_m} −p_st^{2}_{s}) \\
− E[\widetilde{id}_s](T_R+p_st_s(\dfrac{1}{D_c}−\dfrac{1}{p_m})) \\
− A_s+(c_r−c_m)p_mT_s−h_m(np_mT_sT_R−\dfrac{n_2+n−2r−2}{2}T_RD_R−\dfrac{p^{2}_{s}t^{2}_{s}}{2p_m}) \\
− A_m+(cr_1−c_r)p_mT_s−\dfrac{h_r}{2}(\dfrac{p^{2}_{m}T^{2}_{s}}{D_c}−2np_mT_sT_R−(2n+1)T_RD_R)\\
− E[\widetilde{id}_m](\dfrac{p_mT_m−nD_R}{D_c})+\dfrac{(n+1)cr_1E[\widetilde{Ire}]D_cM^2}{2}−E[\widetilde{id}_r]T_R−A_r] E A [\widetilde {T} P_1] =\dfrac{D_c}{pm^{T_s+D_R}} [0(c_m−c_s)p_mT_s−h_s(\dfrac{p_{s}t^{2}_{s}} {p_m} −p_st^{2}_{s}) \\
− E[\widetilde{id}_s](T_R+p_st_s(\dfrac{1}{D_c}−\dfrac{1}{p_m})) \\
− A_s+(c_r−c_m)p_mT_s−h_m(np_mT_sT_R−\dfrac{n_2+n−2r−2}{2}T_RD_R−\dfrac{p^{2}_{s}t^{2}_{s}}{2p_m}) \\
− A_m+(cr_1−c_r)p_mT_s−\dfrac{h_r}{2}(\dfrac{p^{2}_{m}T^{2}_{s}}{D_c}−2np_mT_sT_R−(2n+1)T_RD_R)\\
− E[\widetilde{id}_m](\dfrac{p_mT_m−nD_R}{D_c})+\dfrac{(n+1)cr_1E[\widetilde{Ire}]D_cM^2}{2}−E[\widetilde{id}_r]T_R−A_r]](https://learn.saylor.org/filter/tex/pix.php/07d19945d7f1793e4e9b52997a8a73fb.svg)
(26)
- For Case 2 (T′ ≤ M ≤ T R )
(27)