Writing Equations of Ellipses in Standard Form

Deriving the Equation of an Ellipse Centered at the Origin

To derive the equation of an ellipse centered at the origin, we begin with the foci (−c,0) and (c,0). The ellipse is the set of all points (x,y) such that the sum of the distances from (x,y) to the foci is constant, as shown in Figure 5.

A horizontal ellipse centered at (0, 0) in the x y coordinate system, with Vertices at (negative a, 0) and (a, 0) and Foci at

Figure 5

If (a, 0) is a vertex of the ellipse, the distance from (-c, 0) to (a, 0) is a-(-c)=a+c. The distance from (c, 0) to (a, 0) is a-c. The sum of the distances from the foci to the vertex is

(a+c)+(a-c)=2 a

If (x, y) is a point on the ellipse, then we can define the following variables:

\begin{aligned}&d_{1}=\text { the distance from }(-c, 0) \text { to }(x, y) \\&d_{2}=\text { the distance from }(c, 0) \text { to }(x, y)\end{aligned}

By the definition of an ellipse, d_{1}+d_{2} is constant for any point (x, y) on the ellipse. We know that the sum of these distances is 2 a for the vertex (a, 0). It follows that d_{1}+d_{2}=2 a for any point on the ellipse. We will begin the derivation by applying the distance formula. The rest of the derivation is algebraic.

\begin{array}{ll}
d_{1}+d_{2}=\sqrt{(x-(-c))^{2}+(y-0)^{2}}+\sqrt{(x-c)^{2}+(y-0)^{2}}=2 a & \text { Distance formula } \\
\sqrt{(x+c)^{2}+y^{2}}+\sqrt{(x-c)^{2}+y^{2}}=2 a & \text { Simplify expressions. } \\
\sqrt{(x+c)^{2}+y^{2}}=2 a-\sqrt{(x-c)^{2}+y^{2}} & \text { Move radical to opposite side. } \\
(x+c)^{2}+y^{2}=\left[2 a-\sqrt{(x-c)^{2}+y^{2}}\right]^{2} & \text { Square both sides. } \\
x^{2}+2 c x+c^{2}+y^{2}=4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}}+(x-c)^{2}+y^{2} & \text { Expand the squares. } \\
x^{2}+2 c x+c^{2}+y^{2}=4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}}+x^{2}-2 c x+c^{2}+y^{2} & \text { Expand remaining squares. } \\
2 c x=4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}}-2 c x & \text { Combine like terms. } \\
4 c x-4 a^{2}=-4 a \sqrt{(x-c)^{2}+y^{2}} & \text { Isolate the radical. } \\
c x-a^{2}=-a \sqrt{(x-c)^{2}+y^{2}} & \text { Divide by 4. } \\
{\left[c x-a^{2}\right]^{2}=a^{2}\left[\sqrt{(x-c)^{2}+y^{2}}\right]^{2}} & \text { Square both sides. } \\
c^{2} x^{2}-2 a^{2} c x+a^{4}=a^{2}\left(x^{2}-2 c x+c^{2}+y^{2}\right) & \text { Expand the squares. } \\
c^{2} x^{2}-2 a^{2} c x+a^{4}=a^{2} x^{2}-2 a^{2} c x+a^{2} c^{2}+a^{2} y^{2} & \text { Distribute } a^{2} . \\
a^{2} x^{2}-c^{2} x^{2}+a^{2} y^{2}=a^{4}-a^{2} c^{2} & \text { Rewrite. } \\
x^{2}\left(a^{2}-c^{2}\right)+a^{2} y^{2}=a^{2}\left(a^{2}-c^{2}\right) & \text { Factor common terms. } \\
x^{2} b^{2}+a^{2} y^{2}=a^{2} b^{2} & \text { set } b^{2} = a^2 - c^2 . \\
\frac{x^{2} b^{2}}{a^{2} b^{2}}+\frac{a^{2} y^{2}}{a^{2} b^{2}}=\frac{a^{2} b^{2}}{a^{2} b^{2}} & \text { Divide both sides by } a^{2} b^{2} . . \\
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 & \text { Simplify. }
\end{array}

Thus, the standard equation of an ellipse is \frac{x^2}{a^2} + \frac{y^2}{b^2}=1. This equation defines an ellipse centered at the origin. If a > b, the ellipse is stretched further in the horizontal direction, and if b > a, the ellipse is stretched further in the vertical direction.