Practice Problems

Site: Saylor Academy
Course: MA005: Calculus I
Book: Practice Problems
Printed by: Guest user
Date: Saturday, May 4, 2024, 6:22 PM

Description

Work through the odd-numbered problems 1-21. Once you have completed the problem set, check your answers.

Table of contents

Problems

1. The graph of y=f(x) is given in Fig. 15. Estimate the locations of x_{1} and \mathrm{x}_{2} when Newton's method is applied to \mathrm{f} with the given starting value \mathrm{x}_{0}



3. The function in Fig. 17 has several roots. Which root do the iterates of Newton's method converge to if we start with \mathrm{x}_{0}=1? \mathrm{x}_{0}=5 ?



5. What happens to the iterates if we apply Newton's method to the function in Fig. 19 and start with \mathrm{x}_{0}=1 ? \mathrm{x}_{0}=5?



7. What happens if we apply Newton's method to a function \mathrm{f} and start with \mathrm{x}_{0}= a maximum of \mathrm{f} ? In problems 8 and 9, a function and a value for x_{0} are given. Apply Newton's method to find x_{1} and x_{2}.

9. f(x)=x^{4}-x^{3}-5 and x_{0}=2


In problem 11, use Newton's method to find a root or solution, accurate to 2 decimal places, of the given functions using the given starting points.

11. f(x)=x-\cos (x) and x_{0}=0.7


In problems 13-15, use Newton's method to find all roots or solutions, accurate to 2 decimal places. It is helpful to examine a graph of the function to determine a "good" starting value \mathrm{x}_{0}.

13. \frac{x}{x+3}=x^{2}-2


15. x=\sqrt[5]{3}


17. Use Newton's method to devise an algorithm for approximating the cube root of a number  A.


19. The iterates of numbers using the Simple Chaotic Algorithm have a number of properties.

(a) Verify that the iterates of \mathrm{x}=0 are all equal to \mathrm{0}.

(b) Verify that if \mathrm{x}=1 / 2,1 / 4,1 / 8, and, in general, 1 / 2^{\mathrm{n}}, then the nth iterate of \mathrm{x} is 0 (and so are all of the iterates beyond the nth iterate).


21. \mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}2 \mathrm{x} & \text { if } 0 \leq \mathrm{x} < 1 / 2 \\ 2-2 \mathrm{x} & \text { if } 1 / 2 \leq \mathrm{x} \leq 1\end{array} \quad\right. is called a "stretch and fold" function.

(a) Describe what \mathrm{f} does to the points in the interval [0,1].

(b) Examine and describe the behavior of the iterates of 2 / 3,2 / 5,2 / 7, and 2 / 9.

(c) Examine and describe the behavior of the iterates of \mathrm{.10, \,.105}, and \mathrm{.11}.

(d) Do the iterates of \mathrm{f} lead to chaotic behavior?


Source: Dale Hoffman, https://s3.amazonaws.com/saylordotorg-resources/wwwresources/site/wp-content/uploads/2012/12/MA005-3.8-Newtons-Method.pdf
Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License.

Answers

1. See Fig. 15



3. x_{0}=1: a.      x_{0}=5: b.


5.  \begin{aligned} &x_{0}=1: 1,2,1,2,1, \ldots \\ &x_{0}=5: x_{1} \text { is undefined since } f^{\prime}(5)=0 \end{aligned}


7. If \mathrm{f} is differentiable, then \mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)=0 and \mathrm{x}_{1}=\mathrm{x}_{\mathrm{o}}-\frac{\mathrm{f}\left(\mathrm{x}_{\mathrm{o}}\right)}{\mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{O}}\right)} is undefined.


9. f(x)=x^{4}-x^{3}-5, x_{0}=2. f^{\prime}(x)=4 x^{3}-3 x^{2}.

Then x_{1}=2-\frac{3}{20}=\frac{37}{20}=1.85 and \quad x_{2}=1.85-\frac{1.85^{4}-1.85^{3}-5}{4(1.85)^{3}-3(1.85)^{2}} \approx 1.824641.


11. f(x)=x-\cos (x), f^{\prime}(x)=1+\sin (x), x_{0}=0.7. Then x_{1}=0.7394364978, x_{2}=0.7390851605, and root \approx 0.74


13. \frac{x}{x+3}=x^{2}-2 so we can use f(x)=x^{2}-2-\frac{x}{x+3}. If x_{0}=-4, then the iterates x_{n} \rightarrow-3.3615. If x_{0} =-2, then x_{n} \rightarrow-1.1674. If x_{0}=2, then the iterates x_{n} \rightarrow 1.5289.


15. \mathrm{x}^{5}-3=0 and \mathrm{x}_{\mathrm{O}}=1. Then \mathrm{x}_{\mathrm{n}} \rightarrow 1.2457.


17. f(x)=x^{3}-A so f^{\prime}(x)=3 x^{2}.

Then x_{n+1}=x_{n}-\frac{\left(x_{n}\right)^{3}-A}{3\left(x_{n}\right)^{2}}=x_{n}-\frac{x_{n}}{3}+\frac{A}{3\left(x_{n}\right)^{2}}=\frac{1}{3}\left\{2 x_{n}+\frac{A}{\left(x_{n}\right)^{2}}\right\}.


19. (a) 2(0)-\operatorname{INT}(2(0))=0-0=0.

 (b) 2(1 / 2)-\operatorname{INT}(2(1 / 2))=1-1=0 .

      2(1 / 4)-\operatorname{INT}(2(1 / 4))=1 / 2-0=1 / 2 \rightarrow 0

      2(1 / 8)-\operatorname{INT}(2(1 / 8))=1 / 4-0=1 / 4 \rightarrow 1 / 2 \rightarrow 0

       2\left(1 / 2^{\mathrm{n}}\right)-\operatorname{INT}\left(2\left(1 / 2^{\mathrm{n}}\right)\right)=1 / 2^{\mathrm{n}-1}-0=1 / 2^{\mathrm{n}-1} \rightarrow 1 / 2^{\mathrm{n}-2} \rightarrow \ldots \rightarrow 1 / 4 \rightarrow 1 / 2 \rightarrow 0 .


21. (a) If 0 \leq x \leq 1 / 2, then f stretches x to twice its value, 2 x.

If 1 / 2 < x \leq 1, then f stretches x to twice its value (2 x) and "folds" the part above the value 1(2 x-1) to below 1: 1-(2 x-1)=2-2 x.

(b) \mathrm{f}(2 / 3)=2 / 3.

f(2 / 5)=4 / 5, f(4 / 5)=2 / 5, and the values continues to cycle.

f(2 / 7)=4 / 7, f(4 / 7)=6 / 7, f(6 / 7)=2 / 7, and the values continues to cycle.

f(2 / 9)=4 / 9, f(4 / 9)=8 / 9, f(8 / 9)=2 / 9, and the values continues to cycle.

(c) 0.1,0.2,0.4,0.8,0.4,0.8, and the pair of values 0.4 and 0.8 continue to cycle.

     0.1, \, 0.2, \,  \mathbf{0.4}, \, 0.8, \, \mathbf{0.4}, \,  0.8, and the pair of values 0.4 and 0.8 continue to cycle.
     0.105, \, 0.210, \, 0.42, \, 0.84, \, \mathbf{0.32}, \, 0.64, \, 0.72, \, 0.56, \, 0.88, \, 0.24, \, 0.48, \, 0.96, \, 0.08, \, 0.16, \, \mathbf{0.32}, \,  \ldots
     0.11, \, 0.22, \, 0.44, \, \mathbf{0.88}, \, 0.24, \, 0.48, \, 0.96, \, 0.08, \, 0.16, \, 0.32, \, 0.64, \, 0.72, \, 0.56, \,  \mathbf{0.88}, \,  \ldots

(d) Probably so.