Finding Antiderivatives

Changing the Variable and Definite Integrals

Once an antiderivative in terms of u is found, we have a choice of methods. We can

(a) rewrite our antiderivative in terms of the original variable x , and then evaluate the antiderivative at the integration endpoints and subtract, or

(b) change the integration endpoints to values of u, and evaluate the antiderivative in terms of u before subtracting.


If the original integral had endpoints x=\mathrm{a} and x=\mathrm{b}, and we make the substitution u=\mathrm{g}(x) and \mathrm{du}=g^{\prime}(x) \mathrm{d} \mathrm{x}, then the new integral will have endpoints u=\mathrm{g}(\mathrm{a}) and u=\mathrm{g}(\mathrm{b}) and

 \int_{x=\mathrm{a}}^{x=\mathrm{b}} (original integrand) dx becomes \int_{u=g(a)}^{u=g(b)} (new integrand) du.


To evaluate \int_{0}^{1}(3 x-1)^{4} \mathrm{~d} \mathrm{x}, we can put u=3 x-1. Then \mathbf{d u}=\mathrm{d}(3 x-1)=\mathbf{3} \mathbf{d} \mathbf{x} so the integral becomes \int u^{4} \frac{\mathbf{1}}{\mathbf{3}} \mathrm{du}=\frac{1}{15} u^{5}+\mathrm{C}.

(a) Converting our antiderivative back to the variable x and evaluating with the original endpoints:

\int_{0}^{1}(3 x-1)^{4} \mathrm{dx}=\left.\frac{1}{15}(3 x-1)^{5}\right|_{0} ^{1}=\frac{1}{15}(3 \cdot 1-1)^{5}-\frac{1}{15}(3 \cdot 0-1)^{5}=\frac{1}{15}(2)^{5}-\frac{1}{15}(-1)^{5}=\frac{32}{15}-\frac{-1}{15}=\frac{33}{15}.


(b) Converting the integration endpoints to values of u: when \mathrm{x}=0, then u=3 x-1=3 \cdot 0-1=-1, and when \mathrm{x}=1, then u=3 x-1=3 \cdot 1-1=2 so

\int_{x=0}^{x=1}(3 x-1)^{4} \mathrm{dx}=\int_{u=-1}^{u=2} u^{4} \frac{1}{3} \mathrm{du}=\left.\frac{1}{15} \mathrm{u}^{5}\right|_{-1} ^{2}=\frac{1}{15}(2)^{5}-\frac{1}{15}(-1)^{5}=\frac{32}{15}-\frac{-1}{15}=\frac{33}{15}.

Both approaches typically involve about the same amount of work and calculation.


Practice 4: If the original integrals in Example 4 had endpoints (a) \mathrm{x}=0 to \mathrm{x}=\pi, (b) \mathrm{x}=0 to \mathrm{x}=2, and (c) and \mathrm{x}=0 to x=\ln (3), then the new integrals should have what endpoints?


Special Transformations for \int \sin ^{2}(x) \mathrm{dx} \text { and } \int \cos ^{2}(x) \mathrm{dx}

The integrals of \sin ^{2}(x) and \cos ^{2}(x) occur relatively often, and we can find their antiderivatives with the help of two trigonometric identities for \cos (2 x):

\cos (2 x)=1-2 \sin ^{2}(x) \text { and } \cos (2 x)=2 \cos ^{2}(x)-1


Solving the identies for \sin ^{2}(x) and \cos ^{2}(x), we get \sin ^{2}(x)=\frac{1-\cos (2 x)}{2} and \cos ^{2}(x)=\frac{1+\cos (2 x)}{2}

Then \begin{aligned}
    \int \sin ^{2}(x) \mathrm{dx} &=\int \frac{1-\cos (2 x)}{2} \mathrm{dx}=\int \frac{1}{2} \mathrm{~d} x-\int \frac{1}{2} \cos (2 x) \mathrm{d} x \\
    &=\frac{x}{2}-\frac{1}{2} \frac{\sin (2 x)}{2}+\mathrm{C}=\frac{x}{2}-\frac{\sin (2 x)}{4}+\mathrm{C} \text { or } \frac{1}{2}\{x-\sin (x) \cos (x)\}+\mathrm{C}
    \end{aligned}


Similarly, \begin{aligned}
    \int \cos ^{2}(x) \mathrm{dx} &=\int \frac{1+\cos (2 x)}{2} \mathrm{dx}=\int \frac{1}{2} \mathrm{~d} x+\int \frac{1}{2} \cos (2 x) \mathrm{d} x \\
    &=\frac{x}{2}+\frac{1}{2} \frac{\sin (2 x)}{2}+\mathrm{C}=\frac{x}{2}+\frac{\sin (2 x)}{4}+\mathrm{C} \text { or } \frac{1}{2}\{x+\sin (x) \cos (x)\}+\mathrm{C}
    \end{aligned}