Applications of Linear Equations
Site: | Saylor Academy |
Course: | MA001: College Algebra |
Book: | Applications of Linear Equations |
Printed by: | Guest user |
Date: | Thursday, 3 April 2025, 12:44 AM |
Description
This section provides you with applications of the linear equation and its representation on the Cartesian plane. Examples are given in the context of real-world models and scenarios.
Models and Applications
Learning Objectives
In this section, you will:
- Set up a linear equation to solve a real-world application.
- Use a formula to solve a real-world application.

Source: Rice University, https://openstax.org/books/college-algebra/pages/2-3-models-and-applications
This work is licensed under a Creative Commons Attribution 4.0 License.
Setting up a Linear Equation to Solve a Real-World Application
To set up or model a linear equation to fit a real-world application, we must first determine the known quantities and define the unknown quantity as a variable. Then, we begin to interpret the words as mathematical expressions using mathematical symbols. Let us use the car rental example above. In this case, a known cost, such as $0.10/mi, is multiplied by an unknown quantity, the number of miles driven. Therefore, we can write . This expression represents a variable cost because it changes according to the number of miles driven.
If a quantity is independent of a variable, we usually just add or subtract it, according to the problem. As these amounts do not change, we call them fixed costs. Consider a car rental agency that charges $0.10/mi plus a daily fee of $50. We can use these quantities to model an equation that can be used to find the daily car rental cost .
When dealing with real-world applications, there are certain expressions that we can translate directly into math. Table 1 lists some common verbal expressions and their equivalent mathematical expressions.
HOW TO
Given a real-world problem, model a linear equation to fit it.
- Identify known quantities.
- Assign a variable to represent the unknown quantity.
- If there is more than one unknown quantity, find a way to write the second unknown in terms of the first.
- Write an equation interpreting the words as mathematical operations.
- Solve the equation. Be sure the solution can be explained in words, including the units of measure.
EXAMPLE 1
Modeling a Linear Equation to Solve an Unknown Number Problem
Find a linear equation to solve for the following unknown quantities: One number exceeds another number by and their sum is
. Find the two numbers.
Solution
Let equal the first number. Then, as the second number exceeds the first by 17, we can write the second number as
. The sum of the two numbers is 31. We usually interpret the word is as an equal sign.
TRY IT #1
EXAMPLE 2
Setting Up a Linear Equation to Solve a Real-World Application
There are two cell phone companies that offer different packages. Company A charges a monthly service fee of $34 plus $.05/min talk-time. Company B charges a monthly service fee of $40 plus $.04/min talk-time.
- ⓐWrite a linear equation that models the packages offered by both companies.
- ⓑ If the average number of minutes used each month is 1,160, which company offers the better plan?
- ⓒIf the average number of minutes used each month is 420, which company offers the better plan?
- ⓓHow many minutes of talk-time would yield equal monthly statements from both companies?
Solution
(a)The model for Company(b) If the average number of minutes used each month is , we have the following:
So, Company offers the lower monthly cost of
as compared with the
monthly cost offered by Company
when the average number of minutes used each month is 1,160.
(c) If the average number of minutes used each month is 420, we have the following:
If the average number of minutes used each month is , then Company
offers a lower monthly cost of
compared to Company B's monthly cost of
.
(d) To answer the question of how many talk-time minutes would yield the same bill from both companies, we should think about the problem in terms of coordinates: At what point are both the
-value and the
-value equal? We can find this point by setting the equations equal to each other and solving for
.
Check the -value in each equation.
Therefore, a monthly average of 600 talk-time minutes renders the plans equal. See Figure 2.

TRY IT #2
Find a linear equation to model this real-world application: It costs ABC electronics company $2.50 per unit to produce a part used in a popular brand of desktop computers. The company has monthly operating expenses of $350 for utilities and $3,300 for salaries. What are the company's monthly expenses?
Using a Formula to Solve a Real-World Application
Many applications are solved using known formulas. The problem is stated, a formula is identified, the known quantities are substituted into the formula, the equation is solved for the unknown, and the problem's question is answered. Typically, these problems involve two equations representing two trips, two investments, two areas, and so on. Examples of formulas include the area of a rectangular region, ; the perimeter of a rectangle,
; and the volume of a rectangular solid,
. When there are two unknowns, we find a way to write one in terms of the other because we can solve for only one variable at a time.
EXAMPLE 3
Solving an Application Using a Formula
It takes Andrew min to drive to work in the morning. He drives home using the same route, but it takes
min longer, and he averages
less than in the morning. How far does Andrew drive to work?
Analysis
Note that we could have cleared the fractions in the equation by multiplying both sides of the equation by the LCD to solve for .
TRY IT #3
On Saturday morning, it took Jennifer to drive to her mother's house for the weekend. On Sunday evening, due to heavy traffic, it took Jennifer
to return home. Her speed was
mi/h slower on Sunday than on Saturday. What was her speed on Sunday?
EXAMPLE 4
Solving a Perimeter Problem
The perimeter of a rectangular outdoor patio is
Solution
The perimeter formula is standard:
Now we can solve for the width and then calculate the length.
TRY IT #4
Find the dimensions of a rectangle given that the perimeter isEXAMPLE 5
Solving an Area Problem
The perimeter of a tablet of graph paper is
Solution
The standard formula for area isWe know that the length is
Now, we find the area given the dimensions of in. and
in.
TRY IT #5
A game room has a perimeter ofEXAMPLE 6
Solving a Volume Problem
Find the dimensions of a shipping box given that the length is twice the width, the height isSolution
The formula for the volume of a box is given as , the product of length, width, and height. We are given that
, and
. The volume is 1,600 cubic inches.
The dimensions are in.,
in., and
in.
Analysis
Note that the square root ofTranslating Statements to Algebraic Expressions (Applications)
Source: Mathispower4u, https://youtu.be/ZsUiqCs4xDg
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 License.