Descriptive Statistics
Site: | Saylor Academy |
Course: | CS250: Python for Data Science |
Book: | Descriptive Statistics |
Printed by: | Guest user |
Date: | Friday, 4 April 2025, 6:53 AM |
Description
Once data has been collected and categorized, visualizations and fundamental calculations help describe the data. The visualization approaches (such as bar charts, histograms, and box plots) and calculations (such as mean, median, and standard deviation) introduced here will be revisited and implemented using Python.
Stem-and-Leaf Graphs (Stemplots), Line Graphs, and Bar Graphs
One simple graph, the stem-and-leaf graph or stemplot, comes from the field of exploratory data analysis. It is a good choice when the data sets are small. To create the plot, divide each observation of data into a stem and a leaf. The stem consists of the leading digit(s), while the leaf consists of a final significant digit. For example, 23 has stem two and leaf three. The number 432 has stem 43 and leaf two. Likewise, the number 5,432 has stem 543 and leaf two. The decimal 9.3 has stem nine and leaf three. Write the stems in a vertical line from smallest to largest. Draw a vertical line to the right of the stems. Then write the leaves in increasing order next to their corresponding stem. Make sure the leaves show a space between values, so that the exact data values may be easily determined. The frequency of data values for each stem provides information about the shape of the distribution.
Example 2.1
For Susan Dean's spring precalculus class, scores for the first exam were as follows (smallest to largest):
33, 42, 49, 49, 53, 55, 55, 61, 63, 67, 68, 68, 69, 69, 72, 73, 74, 78, 80, 83, 88, 88, 88, 90, 92, 94, 94, 94, 94, 96, 100
Stem | Leaf |
---|---|
3 | 3 |
4 | 2 9 9 |
5 | 3 5 5 |
6 | 1 3 7 8 8 9 9 |
7 | 2 3 4 8 |
8 | 0 3 8 8 8 |
9 | 0 2 4 4 4 4 6 |
10 | 0 |
Try It 2.1
32, 32, 33, 34, 38, 40, 42, 42, 43, 44, 46, 47, 47, 48, 48, 48, 49, 50, 50, 51, 52, 52, 52, 53, 54, 56, 57, 57, 60, 61
Construct a stemplot for the data.
Example 2.2
Do the data seem to have any concentration of values?
Solution
Stem | Leaf |
---|---|
1 | 1 5 |
2 | 3 5 7 |
3 | 2 3 3 5 8 |
4 | 0 2 5 5 7 8 |
5 | 5 6 |
6 | 5 7 |
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 | 3 |
Table 2.2
Try It 2.2
Example 2.3
President | Age | President | Age | President | Age |
---|---|---|---|---|---|
Washington | 57 | Lincoln | 52 | Hoover | 54 |
J. Adams | 61 | A. Johnson | 56 | F. Roosevelt | 51 |
Jefferson | 57 | Grant | 46 | Truman | 60 |
Madison | 57 | Hayes | 54 | Eisenhower | 62 |
Monroe | 58 | Garfield | 49 | Kennedy | 43 |
J. Q. Adams | 57 | Arthur | 51 | L. Johnson | 55 |
Jackson | 61 | Cleveland | 47 | Nixon | 56 |
Van Buren | 54 | B. Harrison | 55 | Ford | 61 |
W. H. Harrison | 68 | Cleveland | 55 | Carter | 52 |
Tyler | 51 | McKinley | 54 | Reagan | 69 |
Polk | 49 | T. Roosevelt | 42 | G.H.W. Bush | 64 |
Taylor | 64 | Taft | 51 | Clinton | 47 |
Fillmore | 50 | Wilson | 56 | G. W. Bush | 54 |
Pierce | 48 | Harding | 55 | Obama | 47 |
Buchanan | 65 | Coolidge | 51 |
President | Age | President | Age | President | Age |
---|---|---|---|---|---|
Washington | 67 | Lincoln | 56 | Hoover | 90 |
J. Adams | 90 | A. Johnson | 66 | F. Roosevelt | 63 |
Jefferson | 83 | Grant | 63 | Truman | 88 |
Madison | 85 | Hayes | 70 | Eisenhower | 78 |
Monroe | 73 | Garfield | 49 | Kennedy | 46 |
J. Q. Adams | 80 | Arthur | 56 | L. Johnson | 64 |
Jackson | 78 | Cleveland | 71 | Nixon | 81 |
Van Buren | 79 | B. Harrison | 67 | Ford | 93 |
W. H. Harrison | 68 | Cleveland | 71 | Reagan | 93 |
Tyler | 71 | McKinley | 58 | ||
Polk | 53 | T. Roosevelt | 60 | ||
Taylor | 65 | Taft | 72 | ||
Fillmore | 74 | Wilson | 67 | ||
Pierce | 64 | Harding | 57 | ||
Buchanan | 77 | Coolidge | 60 |
Solution
Ages at Inauguration |
|
Ages at Death |
---|---|---|
9 9 8 7 7 7 6 3 2 | 4 | 6 9 |
8 7 7 7 7 6 6 6 5 5 5 5 4 4 4 4 4 2 1 1 1 1 1 0 | 5 | 3 6 6 7 7 8 |
9 5 4 4 2 1 1 1 0 | 6 | 0 0 3 3 4 4 5 6 7 7 7 8 |
7 | 0 0 1 1 1 4 7 8 8 9 | |
8 | 0 1 3 5 8 | |
9 | 0 0 3 3 |
Table 2.5
Try It 2.3
Losses | Wins | Year | Losses | Wins | Year |
---|---|---|---|---|---|
34 | 48 | 1968–1969 | 41 | 41 | 1989–1990 |
34 | 48 | 1969–1970 | 39 | 43 | 1990–1991 |
46 | 36 | 1970–1971 | 44 | 38 | 1991–1992 |
46 | 36 | 1971–1972 | 39 | 43 | 1992–1993 |
36 | 46 | 1972–1973 | 25 | 57 | 1993–1994 |
47 | 35 | 1973–1974 | 40 | 42 | 1994–1995 |
51 | 31 | 1974–1975 | 36 | 46 | 1995–1996 |
53 | 29 | 1975–1976 | 26 | 56 | 1996–1997 |
51 | 31 | 1976–1977 | 32 | 50 | 1997–1998 |
41 | 41 | 1977–1978 | 19 | 31 | 1998–1999 |
36 | 46 | 1978–1979 | 54 | 28 | 1999–2000 |
32 | 50 | 1979–1980 | 57 | 25 | 2000–2001 |
51 | 31 | 1980–1981 | 49 | 33 | 2001–2002 |
40 | 42 | 1981–1982 | 47 | 35 | 2002–2003 |
39 | 43 | 1982–1983 | 54 | 28 | 2003–2004 |
42 | 40 | 1983–1984 | 69 | 13 | 2004–2005 |
48 | 34 | 1984–1985 | 56 | 26 | 2005–2006 |
32 | 50 | 1985–1986 | 52 | 30 | 2006–2007 |
25 | 57 | 1986–1987 | 45 | 37 | 2007–2008 |
32 | 50 | 1987–1988 | 35 | 47 | 2008–2009 |
30 | 52 | 1988–1989 | 29 | 53 | 2009–2010 |
Table 2.6
Example 2.4
Number of Times Teenager Is Reminded | Frequency |
---|---|
0 | 2 |
1 | 5 |
2 | 8 |
3 | 14 |
4 | 7 |
5 | 4 |

Try It 2.4
Number of Times in Shop | Frequency |
---|---|
0 | 7 |
1 | 10 |
2 | 14 |
3 | 9 |
Table 2.8
Example 2.5
Age-Groups | Number of Site Users | Proportion (%) of Site Users |
---|---|---|
13–25 | 65,082,280 | 45% |
26–44 | 53,300,200 | 36% |
45–64 | 27,885,100 | 19% |
Solution

Try It 2.5
Age-Groups | Number of People | Proportion of Population |
---|---|---|
Children | 67,059 | 19% |
Working-age adults | 152,198 | 43% |
Retirees | 131,662 | 38% |
Example 2.6
Race/Ethnicity | AP Examinee Population | Overall Student Population |
---|---|---|
1 = Asian, Asian American, or Pacific Islander | 10.3% | 5.7% |
2 = Black or African American | 9.0% | 14.7% |
3 = Hispanic or Latino | 17.0% | 17.6% |
4 = American Indian or Alaska Native | 0.6% | 1.1% |
5 = White | 57.1% | 59.2% |
6 = Not reported/other | 6.0% | 1.7% |
Solution

Try It 2.6
District | Registered Voter Population | Overall City Population |
---|---|---|
1 | 15.5% | 19.4% |
2 | 12.2% | 15.6% |
3 | 9.8% | 9.0% |
4 | 17.4% | 18.5% |
5 | 22.8% | 20.7% |
6 | 22.3% | 16.8% |
Example 2.7
Dogs | Cats | Fish | Total | |
---|---|---|---|---|
Men | 4 | 2 | 2 | 8 |
Women | 4 | 6 | 2 | 12 |
Total | 8 | 8 | 4 | 20 |
Table 2.13
Solution
Dogs = 8/20 = 0.4
Cats = 8/20 = 0.4
Fish = 4/20 = 0.2
Example 2.8
Dogs | Cats | Fish | Total | |
---|---|---|---|---|
Men | 4 | 2 | 2 | 8 |
Women | 4 | 6 | 2 | 12 |
Total | 8 | 8 | 4 | 20 |
Table 2.14
Solution
Men who own cats = 2/8 = 0.25
Men who own fish = 2/8 = 0.25
Source: OpenStax, https://openstax.org/books/statistics/pages/2-introduction
This work is licensed under a Creative Commons Attribution 4.0 License.
Histograms, Frequency Polygons, and Time Series Graphs
For most of the work you do in this book, you will use a histogram to display the data. One advantage of a histogram is that it can readily display large data sets.
A histogram consists of contiguous (adjoining) boxes. It has both a horizontal axis and a vertical axis. The horizontal axis is more or less a number line, labeled with what the data represents, for example, distance from your home to school. The vertical axis is labeled either frequency or relative frequency (or percent frequency or probability). The graph will have the same shape with either label. The histogram (like the stemplot) can give you the shape of the data, the center, and the spread of the data. The shape of the data refers to the shape of the distribution, whether normal, approximately normal, or skewed in some direction, whereas the center is thought of as the middle of a data set, and the spread indicates how far the values are dispersed about the center. In a skewed distribution, the mean is pulled toward the tail of the distribution.
The relative frequency is equal to the frequency for an observed value of the data divided by the total number of data values in the sample. Remember, frequency is defined as the number of times an answer occurs. If
= frequency,
= total number of data values (or the sum of the individual frequencies), and
= relative frequency,
then
For example, if three students in Mr. Ahab's English class of 40 students received from ninety to 100 percent, then ,
, and
. Thus, 7.5 percent of the students received 90 to 100 percent. Ninety to 100 percent is a quantitative measures.
To construct a histogram, first decide how many bars or intervals, also called classes, represent the data. Many histograms consist of five to 15 bars or classes for clarity. The width of each bar is also referred to as the bin size, which may be calculated by dividing the range of the data values by the desired number of bins (or bars). There is not a set procedure for determining the number of bars or bar width/bin size; however, consistency is key when determining which data values to place inside each interval.
Example 2.9
The following data are the heights (in inches to the nearest half inch) of 100 male semiprofessional soccer players. The heights are continuous data since height is measured.
60, 60.5, 61, 61, 61.5,
63.5, 63.5, 63.5,
64, 64, 64, 64, 64, 64, 64, 64.5, 64.5, 64.5, 64.5, 64.5, 64.5, 64.5, 64.5,
66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66.5, 66.5, 66.5, 66.5, 66.5, 66.5, 66.5, 66.5, 66.5, 66.5, 66.5, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5,
68, 68, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69.5, 69.5, 69.5, 69.5, 69.5,
70, 70, 70, 70, 70, 70, 70.5, 70.5, 70.5, 71, 71, 71,
72, 72, 72, 72.5, 72.5, 73, 73.5,
74
The smallest data value is 60, and the largest data value is 74. To make sure each is included in an interval, we can use 59.95 as the smallest value and 74.05 as the largest value, subtracting and adding .05 to these values, respectively. We have a small range here of 14.1 (74.05 – 59.95), so we will want a fewer number of bins; let''s say eight. So, 14.1 divided by eight bins gives a bin size (or interval size) of approximately 1.76.
NOTE
We will round up to two and make each bar or class interval two units wide. Rounding up to two is a way to prevent a value from falling on a boundary. Rounding to the next number is often necessary even if it goes against the standard rules of rounding. For this example, using 1.76 as the width would also work. A guideline that is followed by some for the width of a bar or class interval is to take the square root of the number of data values and then round to the nearest whole number, if necessary. For example, if there are 150 values of data, take the square root of 150 and round to 12 bars or intervals.
The boundaries are as follows:
- 59.95
- 59.95 + 2 = 61.95
- 61.95 + 2 = 63.95
- 63.95 + 2 = 65.95
- 65.95 + 2 = 67.95
- 67.95 + 2 = 69.95
- 69.95 + 2 = 71.95
- 71.95 + 2 = 73.95
- 73.95 + 2 = 75.95
The heights 60 through 61.5 inches are in the interval 59.95–61.95. The heights that are 63.5 are in the interval 61.95–63.95. The heights that are 64 through 64.5 are in the interval 63.95–65.95. The heights 66 through 67.5 are in the interval 65.95–67.95. The heights 68 through 69.5 are in the interval 67.95–69.95. The heights 70 through 71 are in the interval 69.95–71.95. The heights 72 through 73.5 are in the interval 71.95–73.95. The height 74 is in the interval 73.95–75.95.
The following histogram displays the heights on the x-axis and relative frequency on the y-axis.

Figure 2.5
Interval | Frequency | Relative Frequency |
---|---|---|
59.95–61.95 | 5 | 5/100 = 0.05 |
61.95–63.95 | 3 | 3/100 = 0.03 |
63.95–65.95 | 15 | 15/100 = 0.15 |
65.95–67.95 | 40 | 40/100 = 0.40 |
67.95–69.95 | 17 | 17/100 = 0.17 |
69.95–71.95 | 12 | 12/100 = 0.12 |
71.95–73.95 | 7 | 7/100 = 0.07 |
73.95–75.95 | 1 | 1/100 = 0.01 |
Try It 2.9
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11.5, 11.5, 11.5, 11.5, 11.5, 11.5, 11.5,
Example 2.10
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5,
6, 6
Eleven students buy one book. Ten students buy two books. Sixteen students buy three books. Six students buy four books. Five students buy five books. Two students buy six books.
Solution
The smallest data value is 1, and the largest data value is 6. To make sure each is included in an interval, we can use 0.5 as the smallest value and 6.5 as the largest value by subtracting and adding 0.5 to these values. We have a small range here of 6 (6.5 – 0.5), so we will want a fewer number of bins; let's say six this time. So, six divided by six bins gives a bin size (or interval size) of one.Notice that we may choose different rational numbers to add to, or subtract from, our maximum and minimum values when calculating bin size. In the previous example, we added and subtracted .05, while this time, we added and subtracted .5. Given a data set, you will be able to determine what is appropriate and reasonable.
The following histogram displays the number of books on the x-axis and the frequency on the y-axis.

Using the TI-83, 83+, 84, 84+ Calculator
- Press Y=. Press CLEAR to delete any equations.
- Press STAT 1:EDIT. If L1 has data in it, arrow up into the name L1, press CLEAR and then arrow down. If necessary, do the same for L2.
- Into L1, enter 1, 2, 3, 4, 5, 6. Note that these values represent the numbers of books.
- Into L2, enter 11, 10, 16, 6, 5, 2. Note that these numbers represent the frequencies for the numbers of books.
- Press WINDOW. Set Xmin = .5, Xscl = (6.5 – .5)/6, Ymin = –1, Ymax = 20, Yscl = 1, Xres = 1. The window settings are chosen to accurately and completely show the data value range and the frequency range.
- Press second Y=. Start by pressing 4:Plotsoff ENTER.
- Press second Y=. Press 1:Plot1. Press ENTER. Arrow down to TYPE. Arrow to the third picture (histogram). Press ENTER.
- Arrow down to Xlist: Enter L1 (2nd 1). Arrow down to Freq. Enter L2 (second 2).
- Press GRAPH.
- Use the TRACE key and the arrow keys to examine the histogram.
Try It 2.10
The following data are the number of sports played by 50 student athletes. The number of sports is discrete data since sports are counted.1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
Example 2.11
Number of Hours My Classmates Spent Playing Video Games on Weekends | ||||
---|---|---|---|---|
9.95 | 10 | 2.25 | 16.75 | 0 |
19.5 | 22.5 | 7.5 | 15 | 12.75 |
5.5 | 11 | 10 | 20.75 | 17.5 |
23 | 21.9 | 24 | 23.75 | 18 |
20 | 15 | 22.9 | 18.8 | 20.5 |
Solution

Try It 2.11
The following data represent the number of employees at various restaurants in New York City. Using this data, create a histogram.Collaborative Exercise
Frequency Polygons
Frequency polygons are analogous to line graphs, and just as line graphs make continuous data visually easy to interpret, so too do frequency polygons.Example 2.12
Frequency Distribution for Calculus Final Test Scores | |||
---|---|---|---|
Lower Bound | Upper Bound | Frequency | Cumulative Frequency |
49.5 | 59.5 | 5 | 5 |
59.5 | 69.5 | 10 | 15 |
69.5 | 79.5 | 30 | 45 |
79.5 | 89.5 | 40 | 85 |
89.5 | 99.5 | 15 | 100 |

Try It 2.12
Age at Inauguration | Frequency |
---|---|
41.5–46.5 | 4 |
46.5–51.5 | 11 |
51.5–56.5 | 14 |
56.5–61.5 | 9 |
61.5–66.5 | 4 |
66.5–71.5 | 2 |
Table 2.18
Example 2.13
Frequency Distribution for Calculus Final Test Scores | |||
---|---|---|---|
Lower Bound | Upper Bound | Frequency | Cumulative Frequency |
49.5 | 59.5 | 5 | 5 |
59.5 | 69.5 | 10 | 15 |
69.5 | 79.5 | 30 | 45 |
79.5 | 89.5 | 40 | 85 |
89.5 | 99.5 | 15 | 100 |
Frequency Distribution for Calculus Final Grades | |||
---|---|---|---|
Lower Bound | Upper Bound | Frequency | Cumulative Frequency |
49.5 | 59.5 | 10 | 10 |
59.5 | 69.5 | 10 | 20 |
69.5 | 79.5 | 30 | 50 |
79.5 | 89.5 | 45 | 95 |
89.5 | 99.5 | 5 | 100 |
Table 2.20

Suppose that we want to study the temperature range of a region for an entire month. Every day at noon, we note the temperature and write this down in a log. A variety of statistical studies could be done with these data. We could find the mean or the median temperature for the month. We could construct a histogram displaying the number of days that temperatures reach a certain range of values. However, all of these methods ignore a portion of the data that we have collected.
Constructing a Time Series Graph
Example 2.14
Year | Jan | Feb | Mar | Apr | May | Jun | Jul |
---|---|---|---|---|---|---|---|
2003 | 181.7 | 183.1 | 184.2 | 183.8 | 183.5 | 183.7 | 183.9 |
2004 | 185.2 | 186.2 | 187.4 | 188.0 | 189.1 | 189.7 | 189.4 |
2005 | 190.7 | 191.8 | 193.3 | 194.6 | 194.4 | 194.5 | 195.4 |
2006 | 198.3 | 198.7 | 199.8 | 201.5 | 202.5 | 202.9 | 203.5 |
2007 | 202.416 | 203.499 | 205.352 | 206.686 | 207.949 | 208.352 | 208.299 |
2008 | 211.080 | 211.693 | 213.528 | 214.823 | 216.632 | 218.815 | 219.964 |
2009 | 211.143 | 212.193 | 212.709 | 213.240 | 213.856 | 215.693 | 215.351 |
2010 | 216.687 | 216.741 | 217.631 | 218.009 | 218.178 | 217.965 | 218.011 |
2011 | 220.223 | 221.309 | 223.467 | 224.906 | 225.964 | 225.722 | 225.922 |
2012 | 226.665 | 227.663 | 229.392 | 230.085 | 229.815 | 229.478 | 229.104 |
Year | Aug | Sep | Oct | Nov | Dec | Annual |
---|---|---|---|---|---|---|
2003 | 184.6 | 185.2 | 185.0 | 184.5 | 184.3 | 184.0 |
2004 | 189.5 | 189.9 | 190.9 | 191.0 | 190.3 | 188.9 |
2005 | 196.4 | 198.8 | 199.2 | 197.6 | 196.8 | 195.3 |
2006 | 203.9 | 202.9 | 201.8 | 201.5 | 201.8 | 201.6 |
2007 | 207.917 | 208.490 | 208.936 | 210.177 | 210.036 | 207.342 |
2008 | 219.086 | 218.783 | 216.573 | 212.425 | 210.228 | 215.303 |
2009 | 215.834 | 215.969 | 216.177 | 216.330 | 215.949 | 214.537 |
2010 | 218.312 | 218.439 | 218.711 | 218.803 | 219.179 | 218.056 |
2011 | 226.545 | 226.889 | 226.421 | 226.230 | 225.672 | 224.939 |
2012 | 230.379 | 231.407 | 231.317 | 230.221 | 229.601 | 229.594 |
Solution

Try It 2.14
CO2 Emissions | |||
---|---|---|---|
Ukraine | United Kingdom | United States | |
2003 | 352,259 | 540,640 | 5,681,664 |
2004 | 343,121 | 540,409 | 5,790,761 |
2005 | 339,029 | 541,990 | 5,826,394 |
2006 | 327,797 | 542,045 | 5,737,615 |
2007 | 328,357 | 528,631 | 5,828,697 |
2008 | 323,657 | 522,247 | 5,656,839 |
2009 | 272,176 | 474,579 | 5,299,563 |
Uses of a Time Series Graph
Time series graphs are important tools in various applications of statistics. When a researcher records values of the same variable over an extended period of time, it is sometimes difficult for him or her to discern any trend or pattern. However, once the same data points are displayed graphically, some features jump out. Time series graphs make trends easy to spot.Measures of the Location of the Data
The common measures of location are quartiles and percentiles.Quartiles are special percentiles. The first quartile, Q1, is the same as the 25th percentile, and the third quartile, Q3, is the same as the 75th percentile. The median, M, is called both the second quartile and the 50th percentile.
To calculate quartiles and percentiles, you must order the data from smallest to largest. Quartiles divide ordered data into quarters. Percentiles divide ordered data into hundredths. Recall that a percent means one-hundredth. So, percentiles mean the data is divided into 100 sections. To score in the 90th percentile of an exam does not mean, necessarily, that you received 90 percent on a test. It means that 90 percent of test scores are the same as or less than your score and that 10 percent of the test scores are the same as or greater than your test score.
Percentiles are useful for comparing values. For this reason, universities and colleges use percentiles extensively. One instance in which colleges and universities use percentiles is when SAT results are used to determine a minimum testing score that will be used as an acceptance factor. For example, suppose Duke accepts SAT scores at or above the 75th percentile. That translates into a score of at least 1220.
Percentiles are mostly used with very large populations. Therefore, if you were to say that 90 percent of the test scores are less, and not the same or less, than your score, it would be acceptable because removing one particular data value is not significant.
1, 1, 2, 2, 4, 6, 6.8, 7.2, 8, 8.3, 9, 10, 10, 11.5
When a data set has an even number of data values, the median is equal to the average of the two middle values when the data are arranged in ascending order (least to greatest). When a data set has an odd number of data values, the median is equal to the middle value when the data are arranged in ascending order.
The data set has an even number of values (14 data values), so the median will be the average of the two middle values (the average of 6.8 and 7.2), which is calculated as
So, the median, or second quartile (Q2), is 7.
The first quartile is the median of the lower half of the data, so if we divide the data into seven values in the lower half and seven values in the upper half, we can see that we have an odd number of values in the lower half. Thus, the median of the lower half, or the first quartile (Q1) will be the middle value, or 2. Using the same procedure, we can see that the median of the upper half, or the third quartile (Q3) will be the middle value of the upper half, or 9.
The quartiles are illustrated below:

The interquartile range is a number that indicates the spread of the middle half, or the middle 50 percent of the data. It is the difference between the third quartile (Q3) and the first quartile (Q1)
NOTE
Example 2.15
Solution
Order the following data from smallest to largest:No house price is less than –201,625. However, 5,500,000 is more than 1,159,375. Therefore, 5,500,000 is a potential outlier.
Try It 2.15
For the 11 salaries, calculate the IQR and determine if any salaries are outliers. The following salaries are in dollars.$33,000; $64,500; $28,000; $54,000; $72,000; $68,500; $69,000; $42,000; $54,000; $120,000; $40,500
Try It 2.15
Find the interquartile range for the following two data sets and compare them.Test Scores for Class A:
69, 96, 81, 79, 65, 76, 83, 99, 89, 67, 90, 77, 85, 98, 66, 91, 77, 69, 80, 94
Test Scores for Class B:
Example 2.16
Amount of Sleep per School Night (Hours) | Frequency | Relative Frequency | Cumulative Relative Frequency |
---|---|---|---|
4 | 2 | .04 | .04 |
5 | 5 | .10 | .14 |
6 | 7 | .14 | .28 |
7 | 12 | .24 | .52 |
8 | 14 | .28 | .80 |
9 | 7 | .14 | .94 |
10 | 3 | .06 | 1.00 |
Table 2.24
Find the 28th percentile. Notice the .28 in the Cumulative Relative Frequency column. Twenty-eight percent of 50 data values is 14 values. There are 14 values less than the 28th percentile. They include the two 4s, the five 5s, and the seven 6s. The 28th percentile is between the last six and the first seven. The 28th percentile is 6.5.
Find the median. Look again at the Cumulative Relative Frequency column and find .52. The median is the 50th percentile or the second quartile. Fifty percent of 50 is 25. There are 25 values less than the median. They include the two 4s, the five 5s, the seven 6s, and 11 of the 7s. The median or 50th percentile is between the 25th, or seven, and 26th, or seven, values. The median is seven.
Try It 2.16
Amount of Time Spent on Route (Hours) | Frequency | Relative Frequency | Cumulative Relative Frequency |
---|---|---|---|
2 | 12 | .30 | .30 |
3 | 14 | .35 | .65 |
4 | 10 | .25 | .90 |
5 | 4 | .10 | 1.00 |
Example 2.17
Using Table 2.24:- Find the 80th percentile.
- Find the 90th percentile.
- Find the first quartile. What is another name for the first quartile?
Solution
Using the data from the frequency table, we have the following:- The 80th percentile is between the last eight and the first nine in the table (between the 40th and 41st values). Therefore, we need to take the mean of the 40th an 41st values. The 80th percentile
.
- The 90th percentile will be the 45th data value (location is 0.90(50) = 45), and the 45th data value is nine.
- Q1 is also the 25th percentile. The 25th percentile location calculation:
, the 13th data value. Thus, the 25th percentile is six.
Try It 2.17
Collaborative Exercise
Your instructor or a member of the class will ask everyone in class how many sweaters he or she owns. Answer the following questions:- How many students were surveyed?
- What kind of sampling did you do?
- Construct two different histograms. For each, starting value = ________ and ending value = ________.
- Find the median, first quartile, and third quartile.
- Construct a table of the data to find the following:
- The 10th percentile
- The 70th percentile
- The percentage of students who own fewer than four sweaters
A Formula for Finding the kth Percentile
If you were to do a little research, you would find several formulas for calculating the kth percentile. Here is one of them.- Order the data from smallest to largest.
- Calculate
.
- If i is an integer, then the kth percentile is the data value in the ith position in the ordered set of data.
- If i is not an integer, then round i up and round i down to the nearest integers. Average the two data values in these two positions in the ordered data set. The formula and calculation are easier to understand in an example.
Example 2.18
- Find the 70th percentile.
- Find the 83rd percentile.
Solution
. This equation tells us that i, or the position of the data value in the data set, is 21. So, we will count over to the 21st position, which shows a data value of 64.
percentile
= the index
, which is not an integer. Round it down to 24 and up to 25. The age in the 24th position is 71, and the age in the 25th position is 72. Average 71 and 72. The 83rd percentile is 71.5 years.
Try It 2.18
Listed are 29 ages for Academy Award-winning best actors in order from smallest to largest:NOTE
A Formula for Finding the Percentile of a Value in a Data Set
- Order the data from smallest to largest.
= the number of data values counting from the bottom of the data list up to but not including the data value for which you want to find the percentile.
= the number of data values equal to the data value for which you want to find the percentile.
= the total number of data.
- Calculate
. Then round to the nearest integer.
Example 2.19
- Find the percentile for 58.
- Find the percentile for 25.
Solution
- Counting from the bottom of the list, there are 18 data values less than 58. There is one value of 58.
and
. Fifty-eight is the 64th percentile.
- Counting from the bottom of the list, there are three data values less than 25. There is one value of 25.
and
. Twenty-five is the 12th percentile.
Try It 2.19
Listed are 30 ages for Academy Award-winning best actors in order from smallest to largest:18, 21, 22, 25, 26, 27, 29, 30, 31, 31, 33, 36, 37, 41, 42, 47, 52, 55, 57, 58, 62, 64, 67, 69, 71, 72, 73, 74, 76, 77
Interpreting Percentiles, Quartiles, and Median
A percentile indicates the relative standing of a data value when data are sorted into numerical order from smallest to largest. Percentages of data values are less than or equal to the pth percentile. For example, 15 percent of data values are less than or equal to the 15th percentile.- Low percentiles always correspond to lower data values.
- High percentiles always correspond to higher data values.
Guideline
When writing the interpretation of a percentile in the context of the given data, make sure the sentence contains the following information:- Information about the context of the situation being considered
- The data value (value of the variable) that represents the percentile
- The percentage of individuals or items with data values below the percentile
- The percentage of individuals or items with data values above the percentile
Example 2.20
Solution
- Twenty-five percent of students finished the exam in 35 minutes or less.
- Seventy-five percent of students finished the exam in 35 minutes or more.
- A low percentile could be considered good, as finishing more quickly on a timed exam is desirable. If you take too long, you might not be able to finish.
Try It 2.20
Example 2.21
Solution
- Seventy percent of students answered 16 or fewer questions correctly.
- Thirty percent of students answered 16 or more questions correctly.
- A higher percentile could be considered good, as answering more questions correctly is desirable.
Try It 2.21
Example 2.22
Solution
- Seventy percent of students answered 16 or fewer questions correctly.
- Thirty percent of students answered 16 or more questions correctly.
- A higher percentile could be considered good, as answering more questions correctly is desirable.
Try It 2.22
Example 2.23
A middle school is applying for a grant that will be used to add fitness equipment to the gym. The principal surveyed 15 anonymous students to determine how many minutes a day the students spend exercising. The results from the 15 anonymous students are shown:0 minutes, 40 minutes, 60 minutes, 30 minutes, 60 minutes,
10 minutes, 45 minutes, 30 minutes, 300 minutes, 90 minutes,
30 minutes, 120 minutes, 60 minutes, 0 minutes, 20 minutes
Find the five values that make up the five number summary.
Min = 0
Q1 = 20
Med = 40
Q3 = 60
Max = 300
Listing the data in ascending order gives the following:

The minimum value is 0.
The maximum value is 300.
Since there are an odd number of data values, the median is the middle value of this data set as it is arranged in ascending order, or 40.
The first quartile is the median of the lower half of the scores and does not include the median. The lower half has seven data values; the median of the lower half will equal the middle value of the lower half, or 20.
The third quartile is the median of the upper half of the scores and does not include the median. The upper half also has seven data values; so the median of the upper half will equal the middle value of the upper half, or 60.
If you were the principal, would you be justified in purchasing new fitness equipment? Since 75 percent of the students exercise for 60 minutes or less daily, and since the IQR is 40 minutes (60 – 20 = 40), we know that half of the students surveyed exercise between 20 minutes and 60 minutes daily. This seems a reasonable amount of time spent exercising, so the principal would be justified in purchasing the new equipment.
However, the principal needs to be careful. The value 300 appears to be a potential outlier.
Q3 + 1.5(IQR) = 60 + (1.5)(40) = 120.
The value 300 is greater than 120, so it is a potential outlier. If we delete it and calculate the five values, we get the following values:
- Min = 0
- Q1 = 20
- Q3 = 60
- Max = 120
Box Plots
Box plots, also called box-and-whisker plots or box-whisker plots, give a good graphical image of the concentration of the data. They also show how far the extreme values are from most of the data. As mentioned previously, a box plot is constructed from five values: the minimum value, the first quartile, the median, the third quartile, and the maximum value. We use these values to compare how close other data values are to them.
To construct a box plot, use a horizontal or vertical number line and a rectangular box. The smallest and largest data values label the endpoints of the axis. The first quartile marks one end of the box, and the third quartile marks the other end of the box. Approximately the middle 50 percent of the data fall inside the box. The whiskers extend from the ends of the box to the smallest and largest data values. A box plot easily shows the range of a data set, which is the difference between the largest and smallest data values (or the difference between the maximum and minimum). Unless the median, first quartile, and third quartile are the same value, the median will lie inside the box or between the first and third quartiles. The box plot gives a good, quick picture of the data.
NOTE
You may encounter box-and-whisker plots that have dots marking outlier values. In those cases, the whiskers are not extending to the minimum and maximum values.
Consider, again, this data set:
1, 1, 2, 2, 4, 6, 6.8, 7.2, 8, 8.3, 9, 10, 10, 11.5
The first quartile is two, the median is seven, and the third quartile is nine. The smallest value is one, and the largest value is 11.5. The following image shows the constructed box plot.
NOTE
See the calculator instructions on the TI website or in the appendix.

The two whiskers extend from the first quartile to the smallest value and from the third quartile to the largest value. The median is shown with a dashed line.
NOTE
It is important to start a box plot with a scaled number line. Otherwise, the box plot may not be useful.
Example 2.24
The following data are the heights of 40 students in a statistics class:
59, 60, 61, 62, 62, 63, 63, 64, 64, 64, 65, 65, 65, 65, 65, 65, 65, 65, 65, 66, 66, 67, 67, 68, 68, 69, 70, 70, 70, 70, 70, 71, 71, 72, 72, 73, 74, 74, 75, 77.
Construct a box plot with the following properties. Calculator instructions for finding the five number summary follow this example:
- Minimum value = 59
- Maximum value = 77
- Q1: First quartile = 64.5
- Q2: Second quartile or median = 66
- Q3: Third quartile = 70
Figure 2.14
- Each quarter has approximately 25 percent of the data.
- The spreads of the four quarters are 64.5 – 59 = 5.5 (first quarter), 66 – 64.5 = 1.5 (second quarter), 70 – 66 = 4 (third quarter), and 77 – 70 = 7 (fourth quarter). So, the second quarter has the smallest spread, and the fourth quarter has the largest spread.
- Range = maximum value – minimum value = 77 – 59 = 18.
- Interquartile Range: IQR = Q3 – Q1 = 70 – 64.5 = 5.5.
- The interval 59–65 has more than 25 percent of the data, so it has more data in it than the interval 66–70, which has 25 percent of the data.
- The middle 50 percent (middle half) of the data has a range of 5.5 inches.
Using the TI-83, 83+, 84, 84+ Calculator
To find the minimum, maximum, and quartiles:
Enter data into the list editor (Pres STAT 1:EDIT). If you need to clear the list, arrow up to the name L1, press CLEAR, and then arrow down.
Put the data values into the list L1.
Press STAT and arrow to CALC. Press 1:1-VarStats. Enter L1.
Press ENTER.
Use the down and up arrow keys to scroll.
Smallest value = 59.
Largest value = 77.
Q1: First quartile = 64.5.
Q2: Second quartile or median = 66.
Q3: Third quartile = 70.
To construct the box plot:
Press 4:Plotsoff. Press ENTER.
Arrow down and then use the right arrow key to go to the fifth picture, which is the box plot. Press ENTER.
Arrow down to Xlist: Press 2nd 1 for L1.
Arrow down to Freq: Press ALPHA. Press 1.
Press Zoom. Press 9: ZoomStat.
Press TRACE and use the arrow keys to examine the box plot.
Try It 2.24
The following data are the number of pages in 40 books on a shelf. Construct a box plot using a graphing calculator and state the interquartile range.
136, 140, 178, 190, 205, 215, 217, 218, 232, 234, 240, 255, 270, 275, 290, 301, 303, 315, 317, 318, 326, 333, 343, 349, 360, 369, 377, 388, 391, 392, 398, 400, 402, 405, 408, 422, 429, 450, 475, 512
For some sets of data, some of the largest value, smallest value, first quartile, median, and third quartile may be the same. For instance, you might have a data set in which the median and the third quartile are the same. In this case, the diagram would not have a dotted line inside the box displaying the median. The right side of the box would display both the third quartile and the median. For example, if the smallest value and the first quartile were both one, the median and the third quartile were both five, and the largest value was seven, the box plot would look like the following:
Figure 2.15
In this case, at least 25 percent of the values are equal to one. Twenty-five percent of the values are between one and five, inclusive. At least 25 percent of the values are equal to five. The top 25 percent of the values fall between five and seven, inclusive.
Example 2.25
Test scores for Mr. Ramirez's class held during the day are as follows:
99, 56, 78, 55.5, 32, 90, 80, 81, 56, 59, 45, 77, 84.5, 84, 70, 72, 68, 32, 79, 90.
Test scores for Ms. Park's class held during the evening are as follows:
98, 78, 68, 83, 81, 89, 88, 76, 65, 45, 98, 90, 80, 84.5, 85, 79, 78, 98, 90, 79, 81, 25.5.
- Find the smallest and largest values, the median, and the first and third quartile for Mr. Ramirez's class.
- Find the smallest and largest values, the median, and the first and third quartile for Ms. Park's class.
- For each data set, what percentage of the data is between the smallest value and the first quartile? the first quartile and the median? the median and the third quartile? the third quartile and the largest value? What percentage of the data is between the first quartile and the largest value?
- Create a box plot for each set of data. Use one number line for both box plots.
- Which box plot has the widest spread for the middle 50 percent of the data,the data between the first and third quartiles? What does this mean for that set of data in comparison to the other set of data?
Solution
Min = 32
Q1 = 56
M = 74.5
Q3 = 82.5
Max = 99- Min = 25.5
Q1 = 78
M = 81
Q3 = 89
Max = 98 - Mr. Ramirez's class: There are six data values ranging from 32 to 56: 30 percent. There are six data values ranging from 56 to 74.5: 30 percent. There are five data values ranging from 74.5 to 82.5: 25 percent. There are five data values ranging from 82.5 to 99: 25 percent. There are 16 data values between the first quartile, 56, and the largest value, 99: 75 percent. Ms. Park’s class: There are six data values ranging from 25.5 to 78: 27 percent. There are five data values ranging from 78 to the first instance of 81: 23 percent. There are six data values ranging from the second instance of 81 to 89: 27 percent. There are five data values ranging from 90 to 98: 23 percent. There are 17 values between the first quartile, 78, and the largest value, 98: 77 percent.
- Figure 2.16
- The first data set has the wider spread for the middle 50 percent of the data. The IQR for the first data set is greater than the IQR for the second set. This means that there is more variability in the middle 50 percent of the first data set.
Try It 2.25
The following data set shows the heights in inches for the boys in a class of 40 students:
66, 66, 67, 67, 68, 68, 68, 68, 68, 69, 69, 69, 70, 71, 72, 72, 72, 73, 73, 74.
The following data set shows the heights in inches for the girls in a class of 40 students:
61 61, 62, 62, 63, 63, 63, 65, 65, 65, 66, 66, 66, 67, 68, 68, 68, 69, 69, 69.
Construct a box plot using a graphing calculator for each data set, and state which box plot has the wider spread for the middle 50 percent of the data.
Example 2.26
Graph a box-and-whisker plot for the following data values shown:
10, 10, 10, 15, 35, 75, 90, 95, 100, 175, 420, 490, 515, 515, 790
The five numbers used to create a box-and-whisker plot are as follows:
- Min: 10
- Q1: 15
- Med: 95
- Q3: 490
- Max: 790
The following graph shows the box-and-whisker plot.
Figure 2.17
Try It 2.26
Follow the steps you used to graph a box-and-whisker plot for the data values shown:
0, 5, 5, 15, 30, 30, 45, 50, 50, 60, 75, 110, 140, 240, 330
Measures of the Center of the Data
The center of a data set is also a way of describing location. The two most widely used measures of the center of the data are the mean (average) and the median. To calculate the mean weight of 50 people, add the 50 weights together and divide by 50. To find the median weight of the 50 people, order the data and find the number that splits the data into two equal parts. The median is generally a better measure of the center when there are extreme values or outliers because it is not affected by the precise numerical values of the outliers. The mean is the most common measure of the center.
NOTE
The words mean and average are often used interchangeably. The substitution of one word for the other is common practice. The technical term is arithmetic mean and average is technically a center location. However, in practice among non statisticians, average is commonly accepted for arithmetic mean.
When each value in the data set is not unique, the mean can be calculated by multiplying each distinct value by its frequency and then dividing the sum by the total number of data values. The letter used to represent the sample mean is an x with a bar over it (pronounced "x bar"): . The sample mean is a statistic.
The Greek letter (pronounced "mew") represents the population mean. The population mean is a parameter. One of the requirements for the sample mean to be a good estimate of the population mean is for the sample taken to be truly random.
To see that both ways of calculating the mean are the same, consider the following sample:
1, 1, 1, 2, 2, 3, 4, 4, 4, 4, 4
In the second example, the frequencies are 3(1) + 2(2) + 1(3) + 5(4).
You can quickly find the location of the median by using the expression .
The letter n is the total number of data values in the sample. As discussed earlier, if n is an odd number, the median is the middle value of the ordered data (ordered smallest to largest). If n is an even number, the median is equal to the two middle values added together and divided by two after the data have been ordered. For example, if the total number of data values is 97, then . The median is the 49th value in the ordered data. If the total number of data values is 100, then
. The median occurs midway between the 50th and 51st values. The location of the median and the value of the median are not the same. The uppercase letter M is often used to represent the median. The next example illustrates the location of the median and the value of the median.
Example 2.27
Data indicating the number of months a patient with a specific disease lives after taking a new antibody drug are as follows (smallest to largest):
3, 4, 8, 8, 10, 11, 12, 13, 14, 15, 15, 16, 16, 17, 17, 18, 21, 22, 22, 24, 24, 25, 26, 26, 27, 27, 29, 29, 31, 32, 33, 33, 34, 34, 35, 37, 40, 44, 44, 47
Calculate the mean and the median.
Solution
The calculation for the mean is
To find the median, M, first use the formula for the location. The location is
.
Start from the smallest value and count up; the median is located between the 20th and 21st values (the two 24s):
3, 4, 8, 8, 10, 11, 12, 13, 14, 15, 15, 16, 16, 17, 17, 18, 21, 22, 22, 24, 24, 25, 26, 26, 27, 27, 29, 29, 31, 32, 33, 33, 34, 34, 35, 37, 40, 44, 44, 47
Using the TI-83, 83+, 84, 84+ Calculator
To find the mean and the median:
Clear list L1. Pres STAT 4:ClrList. Enter 2nd 1 for list L1. Press ENTER.
Enter data into the list editor. Press STAT 1:EDIT.
Put the data values into list L1.
Press STAT and arrow to CALC. Press 1:1-VarStats. Press 2nd 1 for L1 and then ENTER.
Press the down and up arrow keys to scroll.
Try It 2.27
The following data show the number of months patients typically wait on a transplant list before getting surgery. The data are ordered from smallest to largest. Calculate the mean and median.
3, 4, 5, 7, 7, 7, 7, 8, 8, 9, 9, 10, 10, 10, 10, 10, 11, 12, 12, 13, 14, 14, 15, 15, 17, 17, 18, 19, 19, 19, 21, 21, 22, 22, 23, 24, 24, 24, 24
Example 2.28
Suppose that in a small town of 50 people, one person earns $5,000,000 per year and the other 49 each earn $30,000. Which is the better measure of the center: the mean or the median?
Solution
There are 49 people who earn $30,000 and one person who earns $5,000,000.
The median is a better measure of the center than the mean because 49 of the values are 30,000 and one is 5,000,000. The 5,000,000 is an outlier. The 30,000 gives us a better sense of the middle of the data.
Try It 2.28
In a sample of 60 households, one house is worth $2,500,000. Half of the rest are worth $280,000, and all the others are worth $315,000. Which is the better measure of the center: the mean or the median?
Another measure of the center is the mode. The mode is the most frequent value. There can be more than one mode in a data set as long as those values have the same frequency and that frequency is the highest. A data set with two modes is called bimodal.
Example 2.29
Statistics exam scores for 20 students are as follows:
50, 53, 59, 59, 63, 63, 72, 72, 72, 72, 72, 76, 78, 81, 83, 84, 84, 84, 90, 93
Find the mode.
Solution
The most frequent score is 72, which occurs five times. Mode = 72.
Try It 2.29
The number of books checked out from the library by 25 students are as follows:
0, 0, 0, 1, 2, 3, 3, 4, 4, 5, 5, 7, 7, 7, 7, 8, 8, 8, 9, 10, 10, 11, 11, 12, 12
Find the mode.
Example 2.30
Five real estate exam scores are 430, 430, 480, 480, 495. The data set is bimodal because the scores 430 and 480 each occur twice.
When is the mode the best measure of the center? Consider a weight loss program that advertises a mean weight loss of six pounds the first week of the program. The mode might indicate that most people lose two pounds the first week, making the program less appealing.
NOTE
The mode can be calculated for qualitative data as well as for quantitative data. For example, if the data set is red, red, red, green, green, yellow, purple, black, blue, the mode is red.
Statistical software will easily calculate the mean, the median, and the mode. Some graphing calculators can also make these calculations. In the real world, people make these calculations using software.
Try It 2.30
Five credit scores are 680, 680, 700, 720, 720. The data set is bimodal because the scores 680 and 720 each occur twice. Consider the annual earnings of workers at a factory. The mode is $25,000 and occurs 150 times out of 301. The median is $50,000, and the mean is $47,500. What would be the best measure of the center?
The Law of Large Numbers and the Mean
The Law of Large Numbers says that if you take samples of larger and larger size from any population, then the mean of the sample is very likely to get closer and closer to
. This law is discussed in more detail later in the text.
Sampling Distributions and Statistic of a Sampling Distribution
You can think of a sampling distribution as a relative frequency distribution with a great many samples. See Chapter 1: Sampling and Data for a review of relative frequency. Suppose 30 randomly selected students were asked the number of movies they watched the previous week. The results are in the relative frequency table shown below.
Number of Movies |
Relative Frequency |
---|---|
0 | |
1 | |
2 | |
3 | |
4 | |
A relative frequency distribution includes the relative frequencies of a number of samples.
Recall that a statistic is a number calculated from a sample. Statistic examples include the mean, the median, and the mode as well as others. The sample mean is an example of a statistic that estimates the population mean
.
Calculating the Mean of Grouped Frequency Tables
When only grouped data is available, you do not know the individual data values (we know only intervals and interval frequencies); therefore, you cannot compute an exact mean for the data set. What we must do is estimate the actual mean by calculating the mean of a frequency table. A frequency table is a data representation in which grouped data is displayed along with the corresponding frequencies. To calculate the mean from a grouped frequency table, we can apply the basic definition of mean: . We simply need to modify the definition to fit within the restrictions of a frequency table.
Since we do not know the individual data values, we can instead find the midpoint of each interval. The midpoint is . We can now modify the mean definition to be
, where
= the frequency of the interval,
Example 2.31
A frequency table displaying Professor Blount's last statistic test is shown. Find the best estimate of the class mean.
Grade Interval | Number of Students |
---|---|
50–56.5 | 1 |
56.5–62.5 | 0 |
62.5–68.5 | 4 |
68.5–74.5 | 4 |
74.5–80.5 | 2 |
80.5–86.5 | 3 |
86.5–92.5 | 4 |
92.5–98.5 | 1 |
Solution
- Find the midpoints for all intervals.
Grade Interval | Midpoint |
---|---|
50–56.5 | 53.25 |
56.5–62.5 | 59.5 |
62.5–68.5 | 65.5 |
68.5–74.5 | 71.5 |
74.5–80.5 | 77.5 |
80.5–86.5 | 83.5 |
86.5–92.5 | 89.5 |
92.5–98.5 | 95.5 |
Table 2.28
Try It 2.31
Hours Teenagers Spend on Video Games | Number of Teenagers |
---|---|
0–3.5 | 3 |
3.5–7.5 | 7 |
7.5–11.5 | 12 |
11.5–15.5 | 7 |
15.5–19.5 | 9 |
Table 2.29
What is the best estimate for the mean number of hours spent playing video games?
Skewness and the Mean, Median, and Mode
Consider the following data set:
4, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 9, 10
This data set can be represented by the following histogram. Each interval has width 1, and each value is located in the middle of an interval.

Figure 2.18
The histogram displays a symmetrical distribution of data. A distribution is symmetrical if a vertical line can be drawn at some point in the histogram such that the shape to the left and the right of the vertical line are mirror images of each other. The mean, the median, and the mode are each seven for these data. In a perfectly symmetrical distribution, the mean and the median are the same. This example has one mode (unimodal), and the mode is the same as the mean and median. In a symmetrical distribution that has two modes (bimodal), the two modes would be different from the mean and median.
The histogram for the data: 4, 5, 6, 6, 6, 7, 7, 7, 7, 8 is not symmetrical. The right-hand side seems chopped off compared to the left-hand side. A distribution of this type is called skewed to the left because it is pulled out to the left. A skewed left distribution has more high values.
Figure 2.19
The mean is 6.3, the median is 6.5, and the mode is seven. Notice that the mean is less than the median, and they are both less than the mode. The mean and the median both reflect the skewing, but the mean reflects it more so. The mean is pulled toward the tail in a skewed distribution.
The histogram for the data: 6, 7, 7, 7, 7, 8, 8, 8, 9, 10 is also not symmetrical. It is skewed to the right. A skewed right distribution has more low values.
Figure 2.20
The mean is 7.7, the median is 7.5, and the mode is seven. Of the three statistics, the mean is the largest, while the mode is the smallest. Again, the mean reflects the skewing the most.
To summarize, generally if the distribution of data is skewed to the left, the mean is less than the median, which is often less than the mode. If the distribution of data is skewed to the right, the mode is often less than the median, which is less than the mean.
Skewness and symmetry become important when we discuss probability distributions in later chapters.
Example 2.32
Statistics are used to compare and sometimes identify authors. The following lists show a simple random sample that compares the letter counts for three authors.
Terry: 7, 9, 3, 3, 3, 4, 1, 3, 2, 2
Davis: 3, 3, 3, 4, 1, 4, 3, 2, 3, 1
Maris: 2, 3, 4, 4, 4, 6, 6, 6, 8, 3
- Make a dot plot for the three authors and compare the shapes.
- Calculate the mean for each.
- Calculate the median for each.
- Describe any pattern you notice between the shape and the measures of center.
Solution
-
Figure 2.21 Terry's distribution has a right (positive) skew.
-
Figure 2.22 Davis's distribution has a left (negative) skew.
-
Figure 2.23 Maris's distribution is symmetrically shaped.
- Terry's mean is 3.7, Davis's mean is 2.7, and Maris's mean is 4.6.
- Terry's median is 3, Davis's median is 3, and Maris's median is four. It would be helpful to manually calculate these descriptive statistics, using the given data sets and then compare to the graphs.
- It appears that the median is always closest to the high point (the mode), while the mean tends to be farther out on the tail. In a symmetrical distribution, the mean and the median are both centrally located close to the high point of the distribution.
Try It 2.32
Discuss the mean, median, and mode for each of the following problems. Is there a pattern between the shape and measure of the center?
a.

Figure 2.24
b.
The Ages at Which Former U.S. Presidents Died | |
---|---|
4 | 6 9 |
5 | 3 6 7 7 7 8 |
6 | 0 0 3 3 4 4 5 6 7 7 7 8 |
7 | 0 1 1 2 3 4 7 8 8 9 |
8 | 0 1 3 5 8 |
9 | 0 0 3 3 |
Key: 8|0 means 80. |
Table 2.30

Measures of the Spread of the Data
An important characteristic of any set of data is the variation in the data. In some data sets, the data values are concentrated closely near the mean; in other data sets, the data values are more widely spread out from the mean. The most common measure of variation, or spread, is the standard deviation. The standard deviation is a number that measures how far data values are from their mean.
The standard deviation
- provides a numerical measure of the overall amount of variation in a data set and
- can be used to determine whether a particular data value is close to or far from the mean.
The standard deviation provides a measure of the overall variation in a data set.
The standard deviation is always positive or zero. The standard deviation is small when all the data are concentrated close to the mean, exhibiting little variation or spread. The standard deviation is larger when the data values are more spread out from the mean, exhibiting more variation.
Suppose that we are studying the amount of time customers wait in line at the checkout at Supermarket A and Supermarket B. The average wait time at both supermarkets is five minutes. At Supermarket A, the standard deviation for the wait time is two minutes; at Supermarket B, the standard deviation for the wait time is four minutes.
Because Supermarket B has a higher standard deviation, we know that there is more variation in the wait times at Supermarket B. Overall, wait times at Supermarket B are more spread out from the average whereas wait times at Supermarket A are more concentrated near the average.
The standard deviation can be used to determine whether a data value is close to or far from the mean.
Suppose that both Rosa and Binh shop at Supermarket A. Rosa waits at the checkout counter for seven minutes, and Binh waits for one minute. At Supermarket A, the mean waiting time is five minutes, and the standard deviation is two minutes. The standard deviation can be used to determine whether a data value is close to or far from the mean. A z-score is a standardized score that lets us compare data sets. It tells us how many standard deviations a data value is from the mean and is calculated as the ratio of the difference in a particular score and the population mean to the population standard deviation.
We can use the given information to create the table below.
Supermarket | Population Standard Deviation, σ | Individual Score, x | Population Mean, μ |
---|---|---|---|
Supermarket A | 2 minutes | 7, 1 | 5 |
Supermarket B | 4 minutes | 5 |
Table 2.31
We need the values from the first row to determine the number of standard deviations above or below the mean each individual wait time is; we can do so by calculating two different z-scores.
Rosa waited for seven minutes, so the z-score representing this deviation from the population mean may be calculated as
Binh waited for one minute, so the z-score representing this deviation from the population mean may be calculated as
A data value that is two standard deviations from the average is just on the borderline for what many statisticians would consider to be far from the average. Considering data to be far from the mean if they are more than two standard deviations away is more of an approximate rule of thumb than a rigid rule. In general, the shape of the distribution of the data affects how much of the data is farther away than two standard deviations. You will learn more about this in later chapters.
The number line may help you understand standard deviation. If we were to put five and seven on a number line, seven is to the right of five. We say, then, that seven is one standard deviation to the right of five because 5 + (1)(2) = 7.
If one were also part of the data set, then one is two standard deviations to the left of five because 5 + (–2)(2) = 1.

- In general, a value = mean + (#ofSTDEV)(standard deviation)
- where #ofSTDEVs = the number of standard deviations
- #ofSTDEV does not need to be an integer
- One is two standard deviations less than the mean of five because 1 = 5 + (–2)(2).
The lowercase letter s represents the sample standard deviation and the Greek letter σ (lower case) represents the population standard deviation.
Calculating the Standard Deviation
The procedure to calculate the standard deviation depends on whether the numbers are the entire population or are data from a sample. The calculations are similar but not identical. Therefore, the symbol used to represent the standard deviation depends on whether it is calculated from a population or a sample. The lowercase letter s represents the sample standard deviation and the Greek letter σ (lowercase sigma) represents the population standard deviation. If the sample has the same characteristics as the population, then
To calculate the standard deviation, we need to calculate the variance first. The variance is the average of the squares of the deviations (the
Formulas for the Sample Standard Deviation
Formulas for the Population Standard Deviation
or
- For the population standard deviation, the denominator is N, the number of items in the population.
Types of Variability in Samples
- Observational or measurement variability
- Natural variability
- Induced variability
- Sample variability
Example 1: Measurement variability
Measurement variability occurs when there are differences in the instruments used to measure or in the people using those instruments. If we are gathering data on how long it takes for a ball to drop from a height by having students measure the time of the drop with a stopwatch, we may experience measurement variability if the two stopwatches used were made by different manufacturers. For example, one stopwatch measures to the nearest second, whereas the other one measures to the nearest tenth of a second. We also may experience measurement variability because two different people are gathering the data. Their reaction times in pressing the button on the stopwatch may differ; thus, the outcomes will vary accordingly. The differences in outcomes may be affected by measurement variability.
Example 2: Natural variability
Natural variability arises from the differences that naturally occur because members of a population differ from each other. For example, if we have two identical corn plants and we expose both plants to the same amount of water and sunlight, they may still grow at different rates simply because they are two different corn plants. The difference in outcomes may be explained by natural variability.
Example 3: Induced variability
Induced variability is the counterpart to natural variability. This occurs because we have artificially induced an element of variation that, by definition, was not present naturally. For example, we assign people to two different groups to study memory, and we induce a variable in one group by limiting the amount of sleep they get. The difference in outcomes may be affected by induced variability.
Example 4: Sample variability
Sampling Variability of a Statistic
NOTE
Example 2.33
The average age is 10.53 years, rounded to two places.
Data | Frequency | Deviations | Deviations2 | (Frequency)(Deviations2) |
---|---|---|---|---|
x | f | (x – ) | (x – )2 | (f)(x – )2 |
9 | 1 | 9 – 10.525 = –1.525 | (–1.525)2 = 2.325625 | 1 × 2.325625 = 2.325625 |
9.5 | 2 | 9.5 – 10.525 = –1.025 | (–1.025)2 = 1.050625 | 2 × 1.050625 = 2.101250 |
10 | 4 | 10 – 10.525 = –.525 | (–.525)2 = .275625 | 4 × .275625 = 1.1025 |
10.5 | 4 | 10.5 – 10.525 = –.025 | (–.025)2 = .000625 | 4 × .000625 = .0025 |
11 | 6 | 11 – 10.525 = .475 | (.475)2 = .225625 | 6 × .225625 = 1.35375 |
11.5 | 3 | 11.5 – 10.525 = .975 | (.975)2 = .950625 | 3 × .950625 = 2.851875 |
|
|
|
|
The total is 9.7375. |
Table 2.32
The sample standard deviation s is equal to the square root of the sample variance:
Typically, you do the calculation for the standard deviation on your calculator or computer. The intermediate results are not rounded. This is done for accuracy.
- For the following problems, recall that value = mean + (#ofSTDEVs)(standard deviation). Verify the mean and standard deviation on a calculator or computer. Note that these formulas are derived by algebraically manipulating the z-score formulas, given either parameters or statistics.
- For a sample:
- For a population:
- For this example, use
because the data is from a sample
- Verify the mean and standard deviation on your calculator or computer.
- Find the value that is one standard deviation above the mean. Find
.
- Find the value that is two standard deviations below the mean. Find
.
- Find the values that are 1.5 standard deviations from (below and above) the mean.
Solution
- Using the TI-83, 83+, 84, 84+ Calculator
- Clear lists L1 and L2. Press STAT 4:ClrList. Enter 2nd 1 for L1, the comma (,), and 2nd 2 for L2.
- Enter data into the list editor. Press STAT 1:EDIT. If necessary, clear the lists by arrowing up into the name. Press CLEAR and arrow down.
- Put the data values (9, 9.5, 10, 10.5, 11, 11.5) into list L1 and the frequencies (1, 2, 4, 4, 6, 3) into list L2. Use the arrow keys to move around.
- Press STAT and arrow to CALC. Press 1:1-VarStats and enter L1 (2nd 1), L2 (2nd 2). Do not forget the comma. Press ENTER.
.
- Use Sx because this is sample data (not a population):
.
Try It 2.33
21, 21, 22, 23, 24, 24, 25, 25, 28, 29, 29, 31, 32, 33, 33, 34, 35, 36, 36, 36, 36, 38, 38, 38, 40
Explanation of the standard deviation calculation shown in the table
The variance is a squared measure and does not have the same units as the data. Taking the square root solves the problem. The standard deviation measures the spread in the same units as the data.
NOTE
The standard deviation, s or σ, is either zero or larger than zero. Describing the data with reference to the spread is called variability. The variability in data depends on the method by which the outcomes are obtained, for example, by measuring or by random sampling. When the standard deviation is zero, there is no spread; that is, all the data values are equal to each other. The standard deviation is small when all the data are concentrated close to the mean and larger when the data values show more variation from the mean. When the standard deviation is a lot larger than zero, the data values are very spread out about the mean; outliers can make s or σ very large.
Example 2.34
33, 42, 49, 49, 53, 55, 55, 61, 63, 67, 68, 68, 69, 69, 72, 73, 74, 78, 80, 83, 88, 88, 88, 90, 92, 94, 94, 94, 94, 96, 100
- Create a chart containing the data, frequencies, relative frequencies, and cumulative relative frequencies to three decimal places.
- Calculate the following to one decimal place using a TI-83+ or TI-84 calculator:
- The sample mean
- The sample standard deviation
- The median
- The first quartile
- The third quartile
- IQR
- Construct a box plot and a histogram on the same set of axes. Make comments about the box plot, the histogram, and the chart.
Solution
- See Table 2.33.
- Entering the data values into a list in your graphing calculator and then selecting Stat, Calc, and 1-Var Stats will produce the one-variable statistics you need.
- The x-axis goes from 32.5 to 100.5; the y-axis goes from –2.4 to 15 for the histogram. The number of intervals is 5, so the width of an interval is (100.5 – 32.5) divided by 5, equal to 13.6. Endpoints of the intervals are as follows: the starting point is 32.5, 32.5 + 13.6 = 46.1, 46.1 + 13.6 = 59.7, 59.7 + 13.6 = 73.3, 73.3 + 13.6 = 86.9, 86.9 + 13.6 = 100.5 = the ending value; no data values fall on an interval boundary.
Figure 2.27
Data | Frequency | Relative Frequency | Cumulative Relative Frequency |
---|---|---|---|
33 | 1 | .032 | .032 |
42 | 1 | .032 | .064 |
49 | 2 | .065 | .129 |
53 | 1 | .032 | .161 |
55 | 2 | .065 | .226 |
61 | 1 | .032 | .258 |
63 | 1 | .032 | .290 |
67 | 1 | .032 | .322 |
68 | 2 | .065 | .387 |
69 | 2 | .065 | .452 |
72 | 1 | .032 | .484 |
73 | 1 | .032 | .516 |
74 | 1 | .032 | .548 |
78 | 1 | .032 | .580 |
80 | 1 | .032 | .612 |
83 | 1 | .032 | .644 |
88 | 3 | .097 | .741 |
90 | 1 | .032 | .773 |
92 | 1 | .032 | .805 |
94 | 4 | .129 | .934 |
96 | 1 | .032 | .966 |
100 | 1 | .032 | .998 (Why isn't this value 1?) |
Try It 2.34
Standard deviation of Grouped Frequency Tables
Example 2.35
Class | Frequency, f | Midpoint, m | m2 | 2 | fm2 | Standard Deviation |
---|---|---|---|---|---|---|
0–2 | 1 | 1 | 1 | 7.58 | 1 | 3.5 |
3–5 | 6 | 4 | 16 | 7.58 | 96 | 3.5 |
6–8 | 10 | 7 | 49 | 7.58 | 490 | 3.5 |
9–11 | 7 | 10 | 100 | 7.58 | 700 | 3.5 |
12–14 | 0 | 13 | 169 | 7.58 | 0 | 3.5 |
15–17 | 2 | 16 | 256 | 7.58 | 512 | 3.5 |
Table 2.34
Try It 2.35
Class | Frequency, f |
---|---|
0–2 | 1 |
3–5 | 6 |
6–8 | 10 |
9–11 | 7 |
12–14 | 0 |
15–17 | 2 |
Table 2.35




Comparing Values from Different Data Sets
- For each data value, calculate how many standard deviations away from its mean the value is.
- In symbols, the formulas for calculating z-scores become the following.
Example 2.36
Student | GPA | School Mean GPA | School Standard Deviation |
---|---|---|---|
John | 2.85 | 3.0 | .7 |
Ali | 77 | 80 | 10 |
Solution
For John,
For Ali,
John has the better GPA when compared to his school because his GPA is 0.21 standard deviations below his school's mean, while Ali's GPA is .3 standard deviations below his school's mean.
Try It 2.36
Swimmer | Time (seconds) | Team Mean Time | Team Standard Deviation |
---|---|---|---|
Angie | 26.2 | 27.2 | .8 |
Beth | 27.3 | 30.1 | 1.4 |
Table 2.38
For any data set, no matter what the distribution of the data is, the following are true:
- At least 75 percent of the data is within two standard deviations of the mean.
- At least 89 percent of the data is within three standard deviations of the mean.
- At least 95 percent of the data is within 4.5 standard deviations of the mean.
- This is known as Chebyshev's Rule.
For data having a distribution that is bell-shaped and symmetric, the following are true:
- Approximately 68 percent of the data is within one standard deviation of the mean.
- Approximately 95 percent of the data is within two standard deviations of the mean.
- More than 99 percent of the data is within three standard deviations of the mean.
- This is known as the Empirical Rule.
- It is important to note that this rule applies only when the shape of the distribution of the data is bell-shaped and symmetric; we will learn more about this when studying the Normal or Gaussian probability distribution in later chapters.
Descriptive Statistics
Stats Lab
Descriptive Statistics
Student Learning Outcomes
- The student will construct a histogram and a box plot.
- The student will calculate univariate statistics.
- The student will examine the graphs to interpret what the data imply.
Collect the Data
Record the number of pairs of shoes you own.
- Randomly survey 30 classmates about the number of pairs of shoes they own. Record their values.
- Construct a histogram. Make five to six intervals. Sketch the graph using a ruler and pencil and scale the axes.
Figure 2.32 - Calculate the following values:
- Are the data discrete or continuous? How do you know?
- In complete sentences, describe the shape of the histogram.
- Are there any potential outliers? List the value(s) that could be outliers. Use a formula to check the end values to determine if they are potential outliers.
Analyze the Data
- Determine the following values:
- Min = _____
- M = _____
- Max = _____
- Q1 = _____
- Q3 = _____
- IQR = _____
- Construct a box plot of data.
- What does the shape of the box plot imply about the concentration of data? Use complete sentences.
- Using the box plot, how can you determine if there are potential outliers?
- How does the standard deviation help you to determine concentration of the data and whether there are potential outliers?
- What does the IQR represent in this problem?
- Show your work to find the value that is 1.5 standard deviations
- above the mean.
- below the mean.