Read this section for an introduction to connecting derivatives to quantities we can see in the real world. Work through practice problems 1-4.
The Idea, Informally
Calculus has been called the study of continuous change, and the limit is the basic concept which allows us to describe and analyze such change. An understanding of limits is necessary to understand derivatives, integrals, and other fundamental topics of calculus.
The limit of a function describes the behavior of the function when the variable is near, but does not equal, a specified number (Fig. 1). If the values of get closer and closer, as close as we want, to one number
as we
take values of
very close to (but not equal to) a number
, then we
say "the limit of , as x approaches
, is
"
and we
write " (The symbol "
" means "approaches" or "gets very close to").
is a single number that describes the behavior (value) of f AT the point
.
is a single number that describes the behavior of
NEAR, BUT NOT AT, the point
.
If we have a graph of the function near , then it is usually easy to determine
.
Example 1: Use the graph of in Fig. 2 to determine the following limits:
Solution: (a) . When
is very close to 1 , the values of
are very close to
In this example, it happens
that
, but that is irrelevant for the limit. The only thing that matters is what happens for
close to 1 but
.
(b) is undefined, but we only care about the behavior of
for
close to 2 and not equal to 2. When
is close to 2 , the values of
are close to 3 . If we restrict
close enough to 2 , the values of
will be as close to 3 as we want, so
.
(c) When is close to 3 (or as
approaches the value 3 ), the values of
are close to 1 (or approach the value 1), so
. For this limit it is completely irrelevant that
, We only care about what happens to
for
close to and not equal to 3.
(d) This one is harder and we need to be careful. When is close to 4 and slightly less than 4 (
is just to the left of 4 on the
-axis), then the values of
are close to
But if
is close to 4 and slightly larger than 4 then the values of
are close to
If we only know that
is very close to 4, then we cannot say whether
will be close to 2 or close to 3 - it depends on whether
is on the right or the left side of
In this situation, the
values are not close to a single number so we say
does not exist. It is irrelevant that
The limit, as
approaches 4, would still be undefined if
was 3 or 2 or anything else.
Practice 1: Use the graph of in Fig. 3 to determine the following limits:
Example 2: Determine the value of .
Solution: We need to investigate the values of when
is close to 3. If the
values get arbitrarily close to or even equal some number
, then
will be the limit. One way to keep track
of both the
and the
values is to set up a table and to pick several
values which are closer and closer (but not equal) to
We can pick some values of
which approach 3 from the left, say
,
and
, and some values of
which approach 3 from the right, say
, and
. The only thing important about these particular values for
is that they get closer and closer to 3 without equaling
You should try some other values "close to 3" to see what happens.
Instead of using a table of values, we could have graphed for
close to 3, Fig. 4, and used the graph to answer the limit question. This graphic approach is easier, particularly if you have a calculator or computer do the graphing
work for you, but it is really very similar to the "table of values" method: in each case you need to evaluate
at many values of
near 3.
You might have noticed that if we just evaluate , then we get the correct answer
That works for this particular problem, but it often fails. The next example illustrates the difficulty.
Example 3: Find . (Same as Example 2 but with
).
Solution: You might try to evaluate at
, but
is not defined at
. It is tempting, but wrong, to conclude that this function does not have a limit as
approaches 1.
Table Method: Trying some "test" values for which get closer and closer to 1 from both the left and the right, we get
The function is not defined at
, but when
is close to 1, the values of
are getting very close to 3. We can get
as close to 3 as
we want by taking
very close to 1 so
Graph Method: We can graph for
close to 1 , Fig. 5, and notice that whenever
is close to 1 , the values of
are close to
is not
defined at
, so the graph has a hole above
, but we only care about what
is doing for
close to but not equal to 1.
Algebra Method: We could have found the same result by noting that as long as
. (If
, then
so it is valid to divide
the numerator and denominator by the factor
) The "
" part of the limit means that
is close to 1 but not equal to
, so our division step is valid and
Source: Dave Hoffman, https://s3.amazonaws.com/saylordotorg-resources/wwwresources/site/wp-content/uploads/2011/11/2-2FunctionLimit.pdf
This work is licensed under a Creative Commons Attribution 3.0 License.