Work through the odd-numbered problems 1-25. Once you have completed the problem set, check your answers.
Practice Problems
In problems 1 – 3, the function is given by a graph, and
.
In problems 5 – 7, the function is given by a formula, and
.
(c) Determine the values of and
.
In problems 9 – 17, use the Antiderivatives and Definite Integrals Theorem to evaluate the integrals.
19. The velocity of a car after seconds is
feet per second. (a) How far does the car travel during its
first 10 seconds? (b) How many seconds does it take the car to travel half the distance in part (a)?
21. The velocity of a car after seconds is
feet per second. (a) How far does the car travel during its
first 10 seconds? (b) How many seconds does it take the car to travel half the distance in part (a)?
23. The velocity of a car after seconds is
feet per second. (a) How many seconds does it take
for the car to come to a stop (velocity = 0)? (b) How far does the car travel while coming to a stop?
(c) How many seconds does it take the car to travel half the distance in part (b)?
25. An artist you know wants to make a figure consisting of the region between the curve and the x–axis for
.
(a) Where should the artist divide the region with a vertical line (Fig. 15) so each piece has the same area?
(b) Where should the artist divide the region with vertical lines to get 3 pieces with equal areas?
Source: Dale Hoffman, https://s3.amazonaws.com/saylordotorg-resources/wwwresources/site/wp-content/uploads/2012/12/MA005-5.5-Areas-Integrals-Antiderivatives.pdf This work is licensed under a Creative Commons Attribution 3.0 License.