Implicit and Logarithmic Differentiation

Read this section to learn about implicit and logarithmic differentiation. Work through practice problems 1-6.

Practice Problem Answers

Practice 1: \mathrm{D}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)=2 \mathrm{x}+2 \mathrm{y} \cdot \mathrm{y}^{\prime}

                   \frac{\mathrm{d}}{\mathrm{dx}}(\sin (2+3 \mathrm{y}))=\cos (2+3 \mathrm{y}) \cdot \mathrm{D}(2+3 \mathrm{y})=\cos (2+3 \mathrm{y}) \cdot 3 \mathbf{y}^{\prime}


Practice 2: Explicitly: y=\left(3 x^{2}+15\right)^{1 / 3} so y^{\prime}=\frac{1}{3}\left(3 x^{2}+15\right)^{-2 / 3} \cdot D\left(3 x^{2}+15\right)=\frac{1}{3}\left(3 x^{2}+15\right)^{-2 / 3} \cdot(6 x)

                                   When (x, y)=(2,3), y^{\prime}=\frac{1}{3}\left(3(2)^{2}+15\right)^{-2 / 3} \cdot(6 \cdot 2)=4(27)^{-2 / 3}=\frac{4}{9}

                    Implicitly: D\left(y^{3}-3 x^{2}\right)=D(15) so 3 y^{2} \cdot y^{\prime}-6 x=0 and y^{\prime}=\frac{2 x}{y^{2}}.

                                    When (x, y)=(2,3), y^{\prime}=\frac{2 \cdot(2)}{(3)^{2}}=\frac{4}{9}.


Practice 3: y+\sin (y)=x^{3}-x

\mathbf{D}(\mathrm{y}+\sin (\mathrm{y}))=\mathrm{D}\left(\mathrm{x}^{3}-\mathrm{x}\right) \quad differentiating each side.

\mathrm{y}^{\prime}+\cos (\mathrm{y}) \cdot \mathbf{y}^{\prime}=3 \mathrm{x}^{2}-1

\mathrm{y}^{\prime} \cdot(1+\cos (\mathrm{y}))=3 \mathrm{x}^{2}-1

\mathbf{y}^{\prime}=\frac{3 \mathrm{x}^{2}-1}{1+\cos (\mathrm{y})}

Then when (x, y)=(1,0), y^{\prime}=\frac{3(1)^{2}-1}{1+\cos (0)}=1.


Practice 4: To find where the parabola crosses the y-axis, we can set \mathrm{x}=0 and solve for the values of \mathrm{y}.

Replacing x with 0 in x^{2}+2 x y+y^{2}+3 x-7 y+2=0, we have y^{2}-7 y+2=0 so y=\frac{7 \pm \sqrt{(-7)^{2}-4(1)(2)}}{2(1)}=\frac{7 \pm \sqrt{41}}{2} \approx 0.3 and 6.7. The parabola crosses the \mathrm{y}-axis approximately at the points (0,0.3) and (0,6.7).

From Example 4, we know that y^{\prime}=\frac{-2 x-2 y-3}{2 x+2 y-7}, so

at the point (0,0.3), the slope is approximately \frac{0-0.6-3}{0+0.6-7} \approx 0.56, and

at the point (0,6.7), the slope is approximately \frac{0-13.4-3}{0+13.4-7} \approx-2.56.


Practice 5: f^{\prime}(x)=f(x) \cdot D(\ln (f(x))) and f(x)=(2 x+1)^{3}\left(3 x^{2}-4\right)^{7}(x+7)^{4}

(i) \quad \ln (f(x))=3 \cdot \ln (2 x+1)+7 \cdot \ln \left(3 x^{2}-4\right)+4 \cdot \ln (x+7).

(ii) \mathrm{D}(\ln (\mathrm{f}(\mathrm{x})))=\frac{3}{2 \mathrm{x}+1}(2)+\frac{7}{3 \mathrm{x}^{2}-4}(6 \mathrm{x})+\frac{4}{\mathrm{x}+7}(1)

(iii) f^{\prime}(x)=f(x) \cdot D(\ln (f(x)))=(2 x+1)^{3}\left(3 x^{2}-4\right)^{7}(x+7)^{4} \cdot\left\{\frac{2 \cdot 3}{2 x+1}+\frac{7 \cdot 6 x}{3 x^{2}-4}+\frac{4}{x+7}\right\}.


Practice 6: \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \cdot \mathrm{D}(\ln (\mathrm{f}(\mathrm{x}))) and \mathrm{f}(\mathrm{x})=\mathrm{x}^{\sin (\mathrm{x})} \mathrm{so}

(i) \ln (f(x))=\ln \left(x^{\sin (x)}\right)=\sin (x) \cdot \ln (x)

(ii) \quad \mathbf{D}(\ln (f(x)))=D(\sin (x) \cdot \ln (x))=\sin (x) \cdot D(\ln (x))+\ln (x) \cdot D(\sin (x))=\sin (x) \cdot \frac{1}{x}+\ln (x) \cdot \cos (x)

(iii) \quad \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \cdot \mathrm{D}(\ln (\mathrm{f}(\mathrm{x})))=\mathrm{x}^{\sin (\mathrm{x})} \cdot\left\{\sin (\mathrm{x}) \cdot \frac{1}{\mathrm{x}}+\ln (\mathrm{x}) \cdot \cos (\mathrm{x})\right\}