Six Sigma

Read this chapter, which gives a clear description of Six Sigma, when it is used, and how to interpret the results.

The Six Sigma Program

Six Sigma is defined as a measure of quality that organizations strive to achieve. It is a disciplined, data-driven approach used to eliminate defects in any process – from manufacturing to transactional and from product to service. Six Sigma does not refer to a process operating within 6 or 4.5 standard deviations of the desired state. To achieve Six Sigma, a process must not produce more than 3.4 defects per million opportunities, where a defect is defined as anything outside of the customer specification. One million opportunities, and only 3.4 defects? Sounds like an efficient process. Here is an example that will help demonstrate. Let's say a surgeon at the top of his field has a 5.51 sigma ranking. Sounds pretty good, right? That means that if he operates on 1,000,000 patients per year he loses 30 of them. When a process is operating at Six Sigma, it is seen that there are essentially zero defects within a process.

In chemical engineering, many different processes require strict, robust control. For example, a reactor may need to be maintained between a specified temperature range to keep the plant safe. However, there is also an optimum temperature at which the reaction will occur. Engineers will want to keep a tight control around this temperature to make the system more efficient, while also closely watching the variable and keeping track of how close it gets to the control limits. Crossing the control limits is not the only problem. In order for a system to be in statistical control as stated by the Six Sigma program, the data points must not frequently approach the same control limit. The Six Sigma program helps engineers monitor processes to keep them within their desirable ranges. Many industries employ the Six Sigma system as well as its hierarchy of positions to champion data-driven problem solving.

Originally invented by Motorola, the Six Sigma system contains belt rankings that represent a person's achievements utilizing Six Sigma methodologies and associated roles and responsibilities. These rankings are modeled after the martial arts system, as detailed below.