Completion requirements
Explore this article to understand the definitions and common functions of BI technologies, which include reporting, online analytical processing (OLAP), analytics, data mining, process mining, complex event processing, business performance management, benchmarking, text mining, predictive analytics, and prescriptive analytics.
Semi-structured or unstructured data
Problems with semi-structured or unstructured data
There are several challenges to developing BI with semi-structured data. According to Inmon & Nesavich, some of those are:
- Physically accessing unstructured textual data – unstructured data is stored in a huge variety of formats.
- Terminology – Among researchers and analysts, there is a need to develop a standardized terminology.
- Volume of data – As stated earlier, up to 85% of all data exists as semi-structured data. Couple that with the need for word-to-word and semantic analysis.
- Searchability of unstructured textual data – A simple search on some data, e.g. apple, results in links where there is a reference to that precise search term. (Inmon & Nesavich, 2008) gives an example: "a search is made on the term felony. In a simple search, the term felony is used, and everywhere there is a reference to felony, a hit to an unstructured document is made. But a simple search is crude. It does not find references to crime, arson, murder, embezzlement, vehicular homicide, and such, even though these crimes are types of felonies".