The Internet of Things

This paper is comprehensive, provides a view into the taxonomy of IoT technologies, and clarifies the interconnectivity of devices, processors, and cloud computing. As the paper points out, "IoT is not a single technology; rather it is an agglomeration of various technologies that work together in tandem". Figure 3 presents a detailed taxonomy of research in IoT technologies.

9. Applications of IoT

9.2. Smart Cities

9.2.1. Smart Transport

Smart transport applications can manage daily traffic in cities using sensors and intelligent information processing systems. The main aim of intelligent transport systems is to minimize traffic congestion, ensure easy and hassle-free parking, and avoid accidents by properly routing traffic and spotting drunk drivers. The sensor technologies governing these types of applications are GPS sensors for location, accelerometers for speed, gyroscopes for direction, RFIDs for vehicle identification, infrared sensors for counting passengers and vehicles, and cameras for recording vehicle movement and traffic. There are many types of applications in this area (refer to):

  1. Traffic surveillance and management applications: vehicles are connected by a network to each other, the cloud, and to a host of IoT devices such as GPS sensors, RFID devices, and cameras. These devices can estimate traffic conditions in different parts of the city. Custom applications can analyze traffic patterns so that future traffic conditions can be estimated. Yu et al. implement a vehicle tracking system for traffic surveillance using video sequences captured on the roads. Traffic congestion detection can also be implemented using smartphone sensors such as accelerometers and GPS sensors. These applications can detect movement patterns of the vehicle while the user is driving. Such kind of information is already being collected by Google maps and users are using it to route around potentially congested areas of the city.
  2. Applications to ensure safety: smart transport does not only imply managing traffic conditions. It also includes safety of people travelling in their vehicles, which up till now was mainly in the hands of drivers. There are many IoT applications developed to help drivers become safer drivers. Such applications monitor driving behavior of drivers and help them drive safely by detecting when they are feeling drowsy or tired and helping them to cope with it or suggesting rest. Technologies used in such applications are face detection, eye movement detection, and pressure detection on the steering (to measure the grip of the driver's hands on the steering). A smartphone application, which estimates the driver's driving behavior using smartphone sensors such as the accelerometer, gyroscope, GPS, and camera, has been proposed by Eren et al.. It can decide whether the driving is safe or rash by analyzing the sensor data.
  3. Intelligent parking management (see Figure 9): in a smart transportation system, parking is completely hassle free as one can easily check on the Internet to find out which parking lot has free spaces. Such lots use sensors to detect if the slots are free or occupied by vehicles. This data is then uploaded to a central server.
  4. Smart traffic lights: traffic lights equipped with sensing, processing, and communication capabilities are called smart traffic lights. These lights sense the traffic congestion at the intersection and the amount of traffic going each way. This information can be analyzed and then sent to neighboring traffic lights or a central controller. It is possible to use this information creatively. For example, in an emergency situation the traffic lights can preferentially give way to an ambulance. When the smart traffic light senses an ambulance coming, it clears the path for it and also informs neighboring lights about it. Technologies used in these lights are cameras, communication technologies, and data analysis modules. Such systems have already been deployed in Rio De Janeiro.
  5. Accident detection applications: a smartphone application designed by White et al. detects the occurrence of an accident with the help of an accelerometer and acoustic data. It immediately sends this information along with the location to the nearest hospital. Some additional situational information such as on-site photographs is also sent so that the first responders know about the whole scenario and the degree of medical help that is required.


Figure 9 

Block diagram of a smart parking system.


9.2.2. Smart Water Systems

Given the prevailing amount of water scarcity in most parts of the world, it is very important to manage our water resources efficiently. As a result most cities are opting for smart solutions that place a lot of meters on water supply lines and storm drains. A good reference in this area is the paper by Hauber-Davidson and Idris. They describe various designs for smart water meters. These meters can be used to measure the degree of water inflow and outflow and to identify possible leaks. Smart water metering systems are also used in conjunction with data from weather satellites and river water sensors. They can also help us predict flooding.


9.2.3. Examples of Smart Cities

Barcelona and Stockholm stand out in the list of smart cities. Barcelona has a CityOS project, where it aims to create a single virtualized OS for all the smart devices and services offered within the city. Barcelona has mainly focused on smart transportation (as discussed in Section 9.2.1) and smart water. Smart transportation is implemented using a network of sensors, centralized analysis, and smart traffic lights. On similar lines Barcelona has sensors on most of its storm drains, water storage tanks, and water supply lines. This information is integrated with weather and usage information. The result of all of this is a centralized water planning strategy. The city is able to estimate the water requirements in terms of domestic usage and industrial usage and for activities such as landscaping and gardening.

Stockholm started way back in 1994, and its first step in this direction was to install an extensive fiber optic system. Subsequently, the city added thousands of sensors for smart traffic and smart water management applications. Stockholm was one of the first cities to implement congestion charging. Users were charged money, when they drove into congested areas. This was enabled by smart traffic technologies. Since the city has a solid network backbone, it is very easy to deploy sensors and applications. For example, recently the city created a smart parking system, where it is possible to easily locate parking spots nearby. Parking lots have sensors, which let a server know about their usage. Once a driver queries the server with her/his GPS location, she/he is guided to the nearest parking lot with free slots. Similar innovations have taken place in the city's smart buildings, snow clearance, and political announcement systems.