This article describes what the human brain is doing when we define the problem (requirements and scope), plan for problem-solving (select datasets and filter or standardize and clean them for relevant information), and engage in the creative thinking process that is analysis. The author differentiates the creative process from the analytical process she terms "insight problem solving", but without creativity, the analyst would not know which methods to apply to the dataset and would have more difficulty expressing their findings in a way that is actionable for the decision-maker. To do this effectively requires a certain amount of empathy to understand what the decision-maker needs and in what format so that they can digest it most thoroughly and see the action steps needed for implementation.
It is interesting to see the problem-solving process laid out in a neurological sense when it is second nature to seasoned analysts. The author describes Tversky and Kahneman's thinking processes that allow analysts to figure out big problems while driving home in light traffic as if on autopilot. One analyst claims to solve most problems by walking away from her computer, riding her bike, or going rollerblading. Sometimes, like figuring out where we left the remote, the important things are fleeting and can only occur to us when we are doing something else. How might you have solved an important thinking problem in an unlikely place or while doing something non-analytical?
1. Introduction
In the Apollo 13 space mission, astronauts together with ground control had to overcome several challenges to bring the team safely back to Earth (Lovell and Kluger, 2006). One of these challenges was controlling carbon dioxide levels onboard the space craft: "For 2 days straight [they] had worked on how to jury-rig the Odysseys canisters to the Aquarius's life support system. Now, using materials known to be available onboard the spacecraft - a sock, a plastic bag, the cover of a flight manual, lots of duct tape, and so on - the crew assembled a strange contraption and taped it into place. Carbon dioxide levels immediately began to fall into the safe range".
The success of Apollo 13's recovery from failure is often cited as a glowing example of human resourcefulness and inventiveness alongside more well-known inventions and innovations over the course of human history. However, this sort of inventive capability is not restricted to a few creative geniuses, but an ability present in all of us, and exemplified in the following mundane example. Consider a situation when your only suit is covered in lint and you do not own a lint remover. You see a roll of duct tape, and being resourceful you reason that it might be a good substitute. You then solve the problem of lint removal by peeling a full turn's worth of tape and re-attaching it backwards onto the roll to expose the sticky side all around the roll. By rolling it over your suit, you can now pick up all the lint.
In both these examples (historic as well as everyday), we see evidence for our innate ability to problem-solve in the real world. Solving real world problems in real time given constraints posed by one's environment are crucial for survival. At the core of this skill is our mental capability to get out of "sticky situations" or impasses, i.e., difficulties that appear unexpectedly as impassable roadblocks to solving the problem at hand. But, what are the cognitive processes that enable a problem solver to overcome such impasses and arrive at a solution, or at least a set of promising next steps?
A central aspect of this type of real world problem solving, is the role played by the solver's surrounding environment during the problem-solving process. Is it possible that interaction with one's environment can facilitate creative thinking? The answer to this question seems somewhat obvious when one considers the most famous anecdotal account of creative problem solving, namely that of Archimedes of Syracuse. During a bath, he found a novel way to check if the King's crown contained non-gold impurities. The story has traditionally been associated with the so-called "Eureka moment," the sudden affective experience when a solution to a particularly thorny problem emerges. In this paper, I want to temporarily turn our attention away from the specific "aha!" experience itself and take particular note that Archimedes made this discovery, not with his eyes closed at a desk, but in a real-world context of a bath. The bath was not only a passive, relaxing environment for Archimedes, but also a specific source of inspiration. Indeed it was his noticing the displacement of water that gave him a specific methodology for measuring the purity of the crown; by comparing how much water a solid gold bar of the same weight would displace as compared with the crown. This sort of continuous environmental interaction was present when the Apollo 13 engineers discovered their life-saving solution, and when you solved the suit-lint-removal problem with duct tape.
The neural mechanisms underlying problem-solving have been extensively studied in the literature, and there is general agreement about the key functional networks and nodes involved in various stages of problem-solving. In addition, there has been a great deal of work in studying the neural basis for creativity and insight problem solving, which is associated with the sudden emergence of solutions. However, in the context of problem-solving, creativity, and insight have been researched as largely an internal process without much interaction with and influence from the external environment. Thus, there are open questions of what role the environment plays during real world problem-solving (RWPS) and how the brain enables the assimilation of novel items during these external interactions.
In this paper, I synthesize the literature on problem-solving, creativity and insight, and particularly focus on how the environment can inform RWPS. I explore three environmentally-informed mechanisms that could play a critical role: (1) partial-cue driven context-shifting, (2) heuristic prototyping and learning novel associations, and (3) learning novel physical inferences. I begin first with some intuitions about real world problem solving, that might help ground this discussion and providing some key distinctions from more traditional problem solving research. Then, I turn to a review of the relevant literature on problem-solving, creativity, and insight first, before discussing the three above-mentioned environmentally-driven mechanisms. I conclude with a potential new model and map out its hypothesized neural basis.