Supervised, Unsupervised, and Reinforcement ML

View

Limitations

Although machine learning has been transformative in some fields, machine-learning programs often fail to deliver expected results. Reasons for this are numerous: lack of (suitable) data, lack of access to the data, data bias, privacy problems, badly chosen tasks and algorithms, wrong tools and people, lack of resources, and evaluation problems.

The "black box theory" poses another yet significant challenge. Black box refers to a situation where the algorithm or the process of producing an output is entirely opaque, meaning that even the coders of the algorithm cannot audit the pattern that the machine extracted out of the data. The House of Lords Select Committee, which claimed that such an"intelligence system" that could have a"substantial impact on an individual's life" would not be considered acceptable unless it provided"a full and satisfactory explanation for the decisions" it makes.

In 2018, a self-driving car from Uber failed to detect a pedestrian, who was killed after a collision. Attempts to use machine learning in healthcare with the IBM Watson system failed to deliver even after years of time and billions of dollars invested. Microsoft's Bing Chat chatbot has been reported to produce hostile and offensive response against its users.

Machine learning has been used as a strategy to update the evidence related to a systematic review and increased reviewer burden related to the growth of biomedical literature. While it has improved with training sets, it has not yet developed sufficiently to reduce the workload burden without limiting the necessary sensitivity for the findings research themselves.


Bias

Machine learning approaches in particular can suffer from different data biases. A machine learning system trained specifically on current customers may not be able to predict the needs of new customer groups that are not represented in the training data. When trained on human-made data, machine learning is likely to pick up the constitutional and unconscious biases already present in society.

Language models learned from data have been shown to contain human-like biases. In an experiment carried out by ProPublica, an investigative journalism organization, a machine learning algorithm's insight towards the recidivism rates among prisoners falsely flagged"black defendants high risk twice as often as white defendants". In 2015, Google photos would often tag black people as gorillas, and in 2018 this still was not well resolved, but Google reportedly was still using the workaround to remove all gorillas from the training data, and thus was not able to recognize real gorillas at all. Similar issues with recognizing non-white people have been found in many other systems. In 2016, Microsoft tested Tay, a chatbot that learned from Twitter, and it quickly picked up racist and sexist language.

Because of such challenges, the effective use of machine learning may take longer to be adopted in other domains. Concern for fairness in machine learning, that is, reducing bias in machine learning and propelling its use for human good is increasingly expressed by artificial intelligence scientists, including Fei-Fei Li, who reminds engineers that "There's nothing artificial about AI...It's inspired by people, it's created by people, and - most importantly - it impacts people. It is a powerful tool we are only just beginning to understand, and that is a profound responsibility".


Explainability

Explainable AI (XAI), or Interpretable AI, or Explainable Machine Learning (XML), is artificial intelligence (AI) in which humans can understand the decisions or predictions made by the AI. It contrasts with the "black box" concept in machine learning where even its designers cannot explain why an AI arrived at a specific decision. By refining the mental models of users of AI-powered systems and dismantling their misconceptions, XAI promises to help users perform more effectively. XAI may be an implementation of the social right to explanation.


Overfitting

The blue line could be an example of overfitting a linear function due to random noise.

The blue line could be an example of overfitting a linear function due to random noise.

Settling on a bad, overly complex theory gerrymandered to fit all the past training data is known as overfitting. Many systems attempt to reduce overfitting by rewarding a theory in accordance with how well it fits the data but penalizing the theory in accordance with how complex the theory is.


Other limitations and vulnerabilities

Learners can also disappoint by "learning the wrong lesson". A toy example is that an image classifier trained only on pictures of brown horses and black cats might conclude that all brown patches are likely to be horses. A real-world example is that, unlike humans, current image classifiers often do not primarily make judgments from the spatial relationship between components of the picture, and they learn relationships between pixels that humans are oblivious to, but that still correlate with images of certain types of real objects. Modifying these patterns on a legitimate image can result in "adversarial" images that the system misclassifies.

Adversarial vulnerabilities can also result in nonlinear systems, or from non-pattern perturbations. For some systems, it is possible to change the output by only changing a single adversarially chosen pixel. Machine learning models are often vulnerable to manipulation and/or evasion via adversarial machine learning.

Researchers have demonstrated how backdoors can be placed undetectably into classifying (e.g., for categories "spam" and well-visible "not spam" of posts) machine learning models which are often developed and/or trained by third parties. Parties can change the classification of any input, including in cases for which a type of data/software transparency is provided, possibly including white-box access.