
Representation of games
The games studied in game theory are well-defined mathematical objects. To be fully defined, a game must specify the following elements: the players of the game, the information and actions available to each player at each decision point, and the payoffs for each outcome. (Eric Rasmusen refers to these four "essential elements" by the acronym "PAPI"). A game theorist typically uses these elements, along with a solution concept of their choosing, to deduce a set of equilibrium strategies for each player such that, when these strategies are employed, no player can profit by unilaterally deviating from their strategy. These equilibrium strategies determine an equilibrium to the game - a stable state in which either one outcome occurs or a set of outcomes occur with known probability.
In games, players typically have a 'Dominant Strategy', where they are incentivised to choose the best possible strategy that gives them the maximum payoff, and stick to it even when the other player/s change their strategies or choose a different option. However, depending on the possible payoffs, one of the players may not possess a 'Dominant Strategy', while the other player might. A player not having a dominant strategy is not a confirmation that another player won't have a dominant strategy of their own, which puts the first player at an immediate disadvantage.
However, there is the chance of both players possessing Dominant Strategies, when their chosen strategies and their payoffs are dominant, and the combined payoffs form an equilibrium. When this occurs, it creates a Dominant Strategy Equilibrium. This can cause a Social Dilemma, where a game possesses an equilibrium created by two or multiple players who all have dominant strategies, and the game's solution is different to what the cooperative solution to the game would have been.
There is also the chance of a player having more than one dominant strategy. This occurs when reacting to multiple strategies from a second player, and the first player's separate responses having different strategies to each other. This means that there is no chance of a Nash Equilibrium occurring within the game.
Most cooperative games are presented in the characteristic
function form, while the extensive and the normal forms are used to
define noncooperative games.
Extensive form
An extensive form game
The extensive form can be used to formalize games with a time sequencing of moves. Extensive form games can be visualised using game trees (as pictured here). Here each vertex (or node) represents a point of choice for a player. The player is specified by a number listed by the vertex. The lines out of the vertex represent a possible action for that player. The payoffs are specified at the bottom of the tree. The extensive form can be viewed as a multi-player generalization of a decision tree. To solve any extensive form game, backward induction must be used. It involves working backward up the game tree to determine what a rational player would do at the last vertex of the tree, what the player with the previous move would do given that the player with the last move is rational, and so on until the first vertex of the tree is reached.
The game pictured consists of two players. The way this particular game is structured (i.e., with sequential decision making and perfect information), Player 1 "moves" first by choosing either F or U (fair or unfair). Next in the sequence, Player 2, who has now observed Player 1's move, can choose to play either A or R (accept or reject). Once Player 2 has made their choice, the game is considered finished and each player gets their respective payoff, represented in the image as two numbers, where the first number represents Player 1's payoff, and the second number represents Player 2's payoff. Suppose that Player 1 chooses U and then Player 2 chooses A: Player 1 then gets a payoff of "eight" (which in real-world terms can be interpreted in many ways, the simplest of which is in terms of money but could mean things such as eight days of vacation or eight countries conquered or even eight more opportunities to play the same game against other players) and Player 2 gets a payoff of "two".
The extensive form can also capture simultaneous-move games and
games with imperfect information. To represent it, either a dotted line
connects different vertices to represent them as being part of the same
information set (i.e. the players do not know at which point they are),
or a closed line is drawn around them.
Normal form
|
Player 2 chooses Left |
Player 2 chooses Right |
Player 1 chooses Up |
4, 3 | –1, –1 |
Player 1 chooses Down |
0, 0 | 3, 4 |
Normal form or payoff matrix of a 2-player, 2-strategy game |
The normal (or strategic form) game is usually represented by a matrix which shows the players, strategies, and payoffs (see the example to the right). More generally it can be represented by any function that associates a payoff for each player with every possible combination of actions. In the accompanying example there are two players; one chooses the row and the other chooses the column. Each player has two strategies, which are specified by the number of rows and the number of columns. The payoffs are provided in the interior. The first number is the payoff received by the row player (Player 1 in our example); the second is the payoff for the column player (Player 2 in our example). Suppose that Player 1 plays Up and that Player 2 plays Left. Then Player 1 gets a payoff of 4, and Player 2 gets 3.
When a game is presented in normal form, it is presumed that each player acts simultaneously or, at least, without knowing the actions of the other. If players have some information about the choices of other players, the game is usually presented in extensive form.
Every extensive-form game has an equivalent normal-form game,
however, the transformation to normal form may result in an exponential
blowup in the size of the representation, making it computationally
impractical.
Characteristic function form
In games that possess removable utility, separate rewards are not given; rather, the characteristic function decides the payoff of each unity. The idea is that the unity that is 'empty', so to speak, does not receive a reward at all.
The origin of this form is to be found in John von Neumann and Oskar Morgenstern's book; when looking at these instances, they guessed that when a unionSuch characteristic functions have expanded to describe games where there is no removable utility.
Alternative game representations
Alternative game representation forms are used for some subclasses of games or adjusted to the needs of interdisciplinary research. In addition to classical game representations, some of the alternative representations also encode time related aspects.
Name | Year | Means | Type of games | Time |
---|---|---|---|---|
Congestion game | 1973 | functions | subset of n-person games, simultaneous moves | No |
Sequential form | 1994 | matrices | 2-person games of imperfect information | No |
Timed games | 1994 | functions | 2-person games | Yes |
Gala | 1997 | logic | n-person games of imperfect information | No |
Graphical games | 2001 | graphs, functions | n-person games, simultaneous moves | No |
Local effect games | 2003 | functions | subset of n-person games, simultaneous moves | No |
GDL | 2005 | logic | deterministic n-person games, simultaneous moves | No |
Game Petri-nets | 2006 | Petri net | deterministic n-person games, simultaneous moves | No |
Continuous games | 2007 | functions | subset of 2-person games of imperfect information | Yes |
PNSI | 2008 | Petri net | n-person games of imperfect information | Yes |
Action graph games | 2012 | graphs, functions | n-person games, simultaneous moves | No |